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l,,r llw WIT Computer-Aided Dawn Project. His
activities include:

• directing development ofan inleerated svstent of pro-
gram development, integration, and tesring tools for
production ot large-scale military programs:
creating and directing the development of the APT
system for automatic programming of numerically
controlled machine tools, now an international stan-
dard: and

leading the MIT Computer-Aided Design Project,
including research and development in language the-
oi v. language design, generalized compiler construc-
tion. computer graphics hardware and software, and
design applications.
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He was an organizer and participant in the NATO Soft-
ware Engineering Conferences in Germany ( 1968) and Italv
(1969).

Ross received the Joseph Marie Jacquard Award from
the Numerical Control Society in 1975. The paper •Theo-
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rucci' tfd thc Prize Paper Award at the
ai-ii i, Spring Joint Computer Conference in 1965. The
paper “A ED Approach to Generalized Computer-Aided
Design shared the Prize Paper Award at the ACM 20th
Anniversary National Meeting in August 1967. In 1980 Ross
received the Distinguished Service Award from the Society
lot Manufacturing Engineers.

Martin Grcenberger.* Grecnhcrger was horn in Elizabeth.Wl - Hc reived BA. MA. and PhD degrees in
applied mathematics from Harvard University. Before join-
uig the Ml T faculty in 195s. Grecnhcrger was manager of
Applied Science Cambridge, the IBM group that eooper-
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• T ( oinputanon Center. Grcenberger is the coauthor of
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John McCarthy. Born in Boston on Sep-
tember 4. 1927. John McCarthy holds a BS
in mathematics from CalTech ( 1 948) and a
PhD in mathematics from Princeton
(1951 ). At Princeton he was the first Proc-
tor lellow and later Higgins research in-
structor in mathematics. He has also been
associated with the faculty of Dartmouthui l-’cii irnouin

College and MIT, and is now Charles M. Pigott professor of

computer science and director of the Artificial Intelligence
Laboratory at Stanford University.

McCarthy participated in the development of Al*ol 58
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1 I,lie at MIT. where, with Marvin Minsky, he organized and
directed the Artificial Intelligence Projecl. In th'e same lime
period he was a significant instigator of the work on time-
sharing at MIT.

He was chosen as the 1071 ACM Turing Award recipient
and awarded the 1988 Kyoto Prize for outstanding aceom-
pnsliments in advanced technology.

J.A.N. Lee (editor). "JAN" has been ac-
tive in computer-related studies since the
mid-1950s and has served as the director
ol computing and head of department of
three major North American universi-

^ tios- ,1ils spent the past four years on4 leave ,rom his position at Virginia Polv-
technic Institute and State University

serv.no as the director of the Institute for Information Tech-
no'ogy of the Virginia Center for Innovative Technology
His principal research interests have been in the design and
implementation of compilers, testing techniques and [he
hislory ot comparing. Lee serves as the editor-in-chiefof the

ofthe History ofComputing a nd is a past vice
president ol ACM. V

' Adapted from Grcenberger. I%2.:5

t
Robert F. Rosin (interviewer). Rosin
earned a BS in economics, politics, and
engineering at MIT (1957) and MS and
PhD degrees in communication sciences
at the University of Michigan (I960 and
1964). He taught computer science at the
university level until 1976 and has since

. ,

worked in the computer-telecommunica-
lions industry. He is currently vice president and principal
architect of Enhanced Service Providers. Inc., a start-up
companythal tsdeveloping software to integrate voice, text,
and image mformanon. He also provides consulting services
in the areas of communication and information swtem at-
chitecture and education.

Rosin is a founding editor or the Annals, and he served
on the program committee for the first ACM SIGPLAN
s 'S

0r!
,™P?8ramraing Lan?uaSes (HOPL) Conference

held in 1978. He will repeat that role for the second confer-
ence (HOPL-II). planned for 1993.
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Time-Sharing at MIT

introduction
J.A.N. LEE

Time-sharing as an operating systems implementation

methodology is. in many minds, synonymous with MIT
i the names of Fernando Corbato and Robert Fano. Even

. ugh the technique existed and was implemented in pre-

<v6«) special-purpose systems, numerous other implementa-

tions arose in the late 1960s in conjunction with interactive

computing, so it is almost inconceivable today for a vendor

to deliver a mainframe computer system without some mea-

sure of time-sharing and interaction. CTSS and Project

MAC are clearly identifiable pioneer efforts. In 1988. the

Laboratory for Computer Science at MIT invited partici-

pants to a two-day symposium to celebrate the 25th anniver-

of the laboratory. That celebration — the MIT Com-
. or Science Research Symposium, held October 26 and

17 at MIT’s Kresge Auditorium — took the .form of an

exemplary set of presentations on the future of computer

science.

The activities of the laboratory in 25 years, since its

inception as Project MAC by Robert Fano. have covered a

wide variety of topics far broader than just time-sharing and

interactive computing:

• Computer-aided design

• Time-sharing

* Mathlab and Macsyma
• Artificial intelligence

• The development of editors (TECO. Runoff. Script)

• Lisp

• Theory
• Labware
• Parallel Computing
• Education
• The emergence of companies — Prime Computer.

SofTech. Thinking Machines, and many others

* Abstraction and specification

Building on the good fortune of having several partici-

pants in the early development of CTSS and Project MAC
present in Cambridge, the Annuls sought the cooperation of

the laboratory through the good offices of Michael

Dertouzos and Albert Meyer to record interviews with the

attending pioneers. These interviews were transcribed by
Kellie Ross ot the Virginia Center for Innovative Technol-
-)' and edited by Robert F. Rosin and J.A.N. Lee. Each
•

,:
i‘.'.pant was also afforded the opportunity to edit his

presentation, comment on the statements of others, and
provide footnotes of further explanation. False starts, blind
ends, and unfocused asides have been deleted from the
transcript, and some minor reordering of the proceedings

has been undertaken by the editore. The original audiotapes

are in the possession of the MIT archives. Copies of these tapes

and the original transcript, unedited (but one-pass corrected

for accuracy), have been deposited with the Charles Babbage

Institute of the University of Minnesota. Minneapolis.

The interviews pointed to numerous supportive articles and

reports that have documented the technological history of the

development of both CTSS and Project MAC, as well as the

subsequent design of the Multics system. We have attempted

in this special issue of the Annals to supplement the interviews,

which concentrated on the more human and administrative

side of the history, by reprinting (and publishing for the first

time in many cases) excerpts from the relevant documents,

together with our commentary, which we hope will provide the

bridges in time and activity'. Unfortunately, during the devel-

opment of this special issue, one ofour pioneers died—Joseph

C.R. (Lick) Licklider. We dedicate this special issue to his

memory'. We only met him briefly, but it was clear that the

participants regarded him with great love and admiration for

his contributions and support.

Definition

Like terms such as "compiler ” and "operating system." the

term "time-sharing" has been applied to a set ofdevelopments

over a period of 30 years, differing in 1985 from an early

application of the term in 1955. Initially the term was applied2

to a mechanism by which the processing power of the central

computer was shared between a number of different activities

of differing speeds, especially activities related to the operation

of resources such as input-output devices. By this means, the

processing time of a central processor that would be wasted in

waiting for a slower device to complete its task is assigned to

another task that is ready to execute. This technique was used

in the SAGE system to implement the air defense system and

later the SABRE airline reservation system. With the develop-

ment of the CTSS system by Corbato and others at MIT, and

subsequent extension to Multics through Project MAC, the

technique for the implementation of an interactive multitermi-

nal system became synonymous with “interactive computing.’’

Thus time-sharing is a methodology for scheduling a

computer so several users can interact with itsimultaneously

and without apparent interference from each other. Al-

though time-sharing was initially perceived by many as a

programming convenience for debugging,33 the perception

soon was extended to include the provisions of a wide

variety of on-line services and the availability of a large

central memory shared among the user community. In the

strict sense of the terms, it is clear that “interactive comput-
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Time lines for time-sharing, CTSS. and Project MAC.*

insT was one goal of Project MAC and "time-sharing" was
one way to implement that goal. Indeed, in those days using
a •'ingle large computer was the only economical way.

Shortly, with Project MAC and projects elsewhere, those
two terms became confused, and "time-sharing" came to
include interactive computing" for many people. Later, of
course, "interactive computing" was also achieved through
personal computers. As personal computers have been used
as the remote, intelligent terminals for mainframe systems,
the terminology has become even more confusing. Here we
generally use the term "time-sharing" to apply to that style
ol computer usage which uses the technology to implement
interactive computing. In the next article, we briefly trace

the claims to the early uses of the term time-sharing and the
ditferent meanings implied by each user.

Closed shop versus open shop
In the mid-1950s relatively reliable commercial comput-

ers were becoming available and high-level languages were
moving the task of programming from the hands of the
professional programmer to the problem poser, a move
which was accompanied by the concurrent need for more
accessible computer systems. Meanwhile, systems were be-
coming smarter, and professional programmers were avail-
able to construct ever larger programs. Computing center
staffs were being pressured to make more efficient use of
the still expensive equipment.

* Adapted from the time line for the Project MAC 25th anniver-
sary by Peter Elias.

One solution to this problem was the emergence of
monitors, supervisory systems, and. eventually, operating
systems. - Under this scenario, programs and data for a
collection ofjobs were prerecorded (often off-line.) on mag-
netic tape. Then, under the supervision of a monitor pro-
gram. the jobs would run sequentially without operator or
programmer interaction until they terminated or. as was
often the case, encountered an er'ror condition. This pro-
cessing mode was really a means of improving the effective-
ness of a closed-shop operation. Although it also cut down
on the idle or wait time of the processor, it did little to
improve the ability of users to debug their programs. The
turnaround time for a closed-shop operation was reduced
very little for the users, and the problem was aggravated as
larger and more ambitious programs were attempted.

Cons ersely. in an open-shop operation, where users op-
erated the computer themselves in a manner we would now
refer to as '•personal computing" and very definitely in an
"interactive" mode, the ratio of available clock cvcles to
utilized cycles was extremely high. The percentage'of wait
time for user actions to useful operation often exceeded 80
to 90 percent during debugging activities. Open-shop users
did not want to give up their "personal, interactive comput-
ing," and the administrators of closed-shop systems were
unwilling to give up the advantages of machine efficiency
gained through the use of operating systems.

One other element that contributed to the attractiveness
ol time-shared, interactive terminal systems was the inter-
facing of computers with communication systems — espe-
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dally through the public telephone system. As early as 1940

at a mathematics conference at Dartmouth College, the

Stibitz relay computer at the Bell Telephone Laboratories

was operated remotely by a single user a few hundred miles

awav.:9 Communications were obviously essential to the
*“’• elopment of the massive SAGE system, which involved

• eral remote control sites with multiple users, each at a

specially designed terminal interacting independently with

information displayed on cathode-ray tubes. Similarly, the

IBM and American Airlines development of the SABRE
system involved communications with hundreds of termi-

nals distributed geographically.

These mid-1950s systems provided special-purpose ser-

vices to the users through a single software system where
the terminals were used for data entry and output rather

r.an for program development, debugging, and execution,
-v hat was different in John McCarthy's 1959 proposal33

(an

influential but unpublished internal memorandum to Philip

Morse, director of the MIT Computation Center) was the

vision of a computer used independently by different per-

sons for entirely different programs. Perhaps the major step
that McCarthy suggested was to optimize the use of human
time rather than computer time. The optimal use of com-
puter time was to be transparent to the user.

Technology
While the feasibility of the basic concepts of time-shar-

>ng. communications, and interaction had been verified in

individual projects, two technology improvements provided

the key steps toward practicality. These were the replace-

ment of the vacuum tube by the transistor and the availabil-

ity of large-capacity memories. Transistors provided the

reliability of systems that were to be inserted into an envi-

ronment which was tantamount to a public utility. Large-

scale memories provided a medium for the storage and rapid

retrieval of the large variety of software packages used by

individual users, as well as their personal programs and data.

The timing was just right! McCarthy33 proposed the key

hardware modifications to an IBM 709 computer that would

allow time-shared debugging by multiple users. Corbato

said that "it was McCarthy's early advocacy of time-sharing

which inspired much of the interest in developing such

systems."

I
n the history of time-sharing and interactive comput-
ing at MIT, two major events followed the early

developments of the 1950s: The demonstration of the

Compatible Time-Sharing System (CTSS) in 1961 and
its extension into the Multics system within Project

MAC. These occurred against the backdrop of plan-

ning and design politics, interactions with computer

vendors to supply the needed hardware features, and
attempts to maintain the viability of the ongoing ser-

vices of the Computation Center. E3
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Claims to the Term “Time-Sharing”

J.A.N. LEE

time-share - v -To interleave the use of a device for two or more purposes.

time-shared system - n - A specific system in which available central-com-

puter time is shared among several jobs as directed by a scheduling plan or

formula.

time-sharing - adj - 1. The apportionment of intervals of time availability of

various items of equipment to complete the performance of several tasks by
interlacing. (Contrasted with multiprogramming.) 2. The use of a device for

two or more purposes during the same overall time interval, accomplished by

interspersing the computer component actions in time.

Charles J. Sippl, Computer Dictionary and Handbook,

Howard W. Sams. New York, 1965

The emergence of a term is not always coincidental with

the initial development of that particular technology or

system. Even in the case of computers, the word initially

used was "calculator." The word "computer" was originally

applied either to humans who did computations using me-

chanical calculators'" or to the computational element of a

bomb aiming device.* In 1966FanoandCorbato 21 published

a paper in Scientific American which attributed the origin of

time-sharing to Christopher Strachey in a 1960 paper
43

pre-

sented originally at the 1959 UNESCO conference. This

resulted in a letter to the editor from Robert Berner6 in

which he claimed that his article in the 1957 issue of Auto-

matic Control4 was the original reference to time-sharing.

Berner also pointed out that it was reported in the Journal

of the Franklin Institute that he had used the word in a

presentation in the same year. In turn. Robert Dodds wrote

to Berner quoting a 1949 letter in which he described his

(unnamed) invention:

A system consisting of the following: one or more
input-output devices...each conveying its information

to a common location distant from one or all of the

input-output devices; one or more devices which gen-

erate the electrical impulses that convey information

and that control the various operations of the several

devices; one or more scanning or gating devices to

London Times. July ,S, I *>44.
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segregate the information originating from the sev-

eral input-output devices... 18

This description appears to accentuate the confusion

between the process of "time-sharing" that Berner de-

scribed and "interactive computing" that was prevalent in

1966. At the time of Berner's Franklin Institute lecture,

time-sharing was already being implemented as part of the

SAGE system. 2 and shortly thereafter IBM and American
Airlines developed the SABRE system for on-line passen-

ger scheduling and ticketing. When Strachey43 used the

word in 1959. adding the concept of on-line, he added also

debugging for programmers. Donald Knuth wrote to

Strachey 25 years later:

John McCarthy thinks he invented [time-sharing]. So
does K.D. Tocher. I [have] read that Lord Halsburv

says. ..that the idea of time-sharing was "very much in

the air." I hope you'll have time to write me a letter

explaining the history of time-sharing as you see it...

Strachey responded:

The paper I wrote called "Time-sharing in Large Fast

Computers” was read at the first (pre IFIP) confer-

ence at Paris in 1960 [sic]. It was mainly about multi-

programming (to avoid waiting for peripherals) al-

though it did envisage this going on at the same time

».!»« I’W IEEE
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as a programmer was debugging his program at a

console. I did not envisage the sort of console system

•.vhich is now so confusingly called time-sharing. I still

think my use of the term is the more natural.

Campbell- Kelly
4
also quoted Strachey as saying:

“Time-sharing in Large Fast Computers" was proba-

bly the first paper to discuss time-sharing and multi-

programming as we know them. It is a matter of

history that the time-sharing idea became extremely

fashionable in the middle sixties and dominated much

of the work on computing at the time. When I wrote

the paper in 1959. 1, in common with everyone else,

had no idea of the difficulties which would arise in

writing the software to control either the time-sharing

or multi-programming. If I had. I should not have

been so enthusiastic about them.

Strachev filed an application for a patent on time-sharing

in 1959. which was eventually granted (British patent

924672) in 1965. Campbell-Kellv suggests that “the idea of

tieractive time-sharing is plainly there in embryo." In the

>i.me year ( 1959). John McCarthy wrote a memo to Philip

Morse* suggesting modifications to the IBM 709. which was

* The date on the memorandum is January 1 . 1959: there has been

a suggestion that the McCarthy memorandum was actually written

in 1960. the misdating being a common error in the early days of a

new year. See the next section for the content of the memorandum

and McCarthy’s comments on this suggestion.

being contributed by IBM to the Computation Center, in

order to develop "a time-shared operator program.”

In 1962 McCarthy suggested that the concept, if not the

term, goes even further back: “The subject was also touched

on in the lectures by Kemeny and Perlis. In 1945 Vannevar

Bush8 discussed a system for personal information retrieval

called Memex. which probably requires a computer system

of the kind that I am going to discuss for its realization."

I
t is apparent that there have been two major uses of the

term corresponding to two major periods of the history,

with two different spellings (with or without the hyphen):

• Before 1960, time sharing described a method of

implementing multiprogramming (Astrahan and Ja-

cobs.
2 Berner,

4'6 Dodds. ls and Strachey
43

).

• After 1960. time-sharing described a technique

by which interactive computing was developed

(McCarthy33 and Fano and Corbato21 -22
). 0

IEEE Annals of the History of Computing, Vol. 14, No. 1, 1992 • 17



The Beginnings at MIT
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Two key elements were necessary to implement time-
shared. interactive computing: interfaces with commu-

nications facilities, and a machine design that supported
interrupts, memory protection, and a large fast-access exter-

nal store. Each of these elements was feasible in 1959. as

demonstrated by George R. Stibitz in 1940 and by the SAGE
development in 1957.

The lirst public demonstration of remote operation of a

digital computer and ol computer-telephone communica-
tions was conducted as part of the 1940 annual meetina of
the Mathematical Association of America. Problems were
entered into a teletypewriter located in McNutt Hall on the

Dartmouth campus in Hanover. N.H. They were then trans-

mitted via standard Bell System telecommunications facili-

ties to the Bell Telephone Laboratories in New York Citv.

where they were solved on-line by the BTL Model 1 Com-
plex Number Calculator. The results were immediatelv re-

turned on-line via the same telecommunications link to the
teletypewriter located on the Dartmouth campus. 250 miles

away.

Stibitz. who was behind both the demonstration and the
digital computer used in it. was then a mathematician on the

technical staff of the Beil Telephone Laboratories. (Now he
is prolessor emeritus of physiology at the Dartmouth Med-
ical School.)

Stibitz describes the ability to do remote computing as a
natural and integral part of the design of his system. It was
natural and "no big thing" to demonstrate this device at

Dartmouth by leaving the computer where it was and oper-
ating it remotely via a teletypewriter link, rather than goina
to all the trouble and expense of moving the machine itself

Irom New York to Hanover. After all. teletypewriters in

other departments in BTL had already tapped into the

system on occasion to get their computations done. The
length of the teletype line, whether it was 25 feet or 250
miles, involved no major change in operational techniques
or concept.-'

In their 1957 paper. "SAGE — A Data Processing Sys-

tem for Air Defense" (Proc. EICC © 1957 IRE (now
IEEE)). R.R. Everett. C.A. Zraket.and H.D. Bennington-'
described the working of the SAGE system and not only
used the term "time-sharing" but also provided their ow-n

description:

The central computer performs air-defense pro-
cessing in the following manner (see figure l [repro-

duced on the facing page]). The buffer storage tables,

the system-status data, and the system computer pro-
gram are organized in hundreds of blocks — each
block containing from 25 to 4000 computer words. A
short sequence-control program in the central
computer's core memory transfers appropriate pro-

gram and data blocks into core memory, initiates

processing, and then returns appropriate table blocks
(but never programs) back to the drum. To take
advantage ot the in-out break feature, operation of
each air-defense routine is closely coordinated with

operation of the sequence-control program so that

programs and data are transferred during data pro-

cessing.

By timesharing [emphasis added] the central com-
puter. each of the air-defense routines is operated at

least once every minute — many are operated every
several seconds. One interesting feature is that the

frequency of program operation is locked with real

time rather than allowed to vary as a function of load:

during light load conditions the sequence-control pro-
gram will often "mark time" until the real-time clock
indicates that the next operation should be repeated.
Such synchronization with real time simplifies manv
of the control and input-output functions without
causing any degradation in system performance.

Both of these demonstrations showed the feasibility of
the concept, but it took an environment (at MIT) and a

brilliant mind (John McCarthy) to put two and two together
into a far-reaching system.

Digital computation* began at MIT in 1947 with the
Whirlwind I computer. Whirlwind was four or five times
faster than its predecessors by virtue of its excellent elec-

tronic design and parallel operation. By 1 953, core memory,
developed by Jay Forrester and his associates at MIT.
yielded another factor of two. The standards of speed and
reliability set at that time have now come to be expected of
modern computing equipment.

While Whirlwind satisfied the needs of many MIT users,

the pressures of special requirements led to the acquisition
of other computers as well. In 1955 the Instrumentation

* Of course in the field of analog computation. Vannevar Bush
had led the world with the development of the Differential An-
alyzer.
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•;;ssrc 1. Dynamic program operation.^’ Reproduced with permission (© 1957 IRE (now IEEE)).

Laboratory obtained an IBM 650 computer, and in 1956 the

Naval Supersonic Laboratory installed a Bendix G15 com-
puter for processing wind tunnel data.

In 1956. IBM provided an IBM 704 to be located at MIT
with one shift per day for the use. without charge, of educa-

tional and research projects at MIT. and a similar amount
of time for the use of universities and colleges in the New

•viand area. The Computation Center, under the direc-

• ;n of Philip M. Morse, was formed for the administration

and efficient use of this facility. Subsequently, the TX-0
computer was loaned to the Electrical Engineering Depart-

ment by Lincoln Laboratory.

The need for computer capacity at MIT continually in-

creased. In 1960 the Computation Center IBM 704 was
replaced by the more powerful IBM 709 computer, and
several smaller computers also were installed by various

MIT groups. Even more ambitious expansion was sched-

'•v'l for the immediate future.

Reminiscences on the History of

Time-Sharing

John McCarthy

At the time of our inteniews with the CTSS and Project

IAC pioneers, we invited John McCarthy to join the group
.:ch provided this record following the 25th anniversary

‘-chrutions ofthefounding ofthe Laboratory of Computer
Science. McCarthy was unable to extend his stay in the Cam-

bridge area but graciously wrote his own memories of this

era.

I remember thinking about time-sharing at the time of

my first contact with computers and being surprised that this

was not the goal of IBM and all the other manufacturers and
users of computers. This might have been around 1955.

By time-sharing, I meant an operating system that per-

mits each user of a computer to behave as though he were

in sole control of a computer, not necessarily identical with

the machine on which the operating system is running.

Christopher Strachey may well have been correct in saying

in his letter to Donald Knuth* that the term was already in

use for time-sharing among programs written to run to-

gether. This idea had already been used in the SAGE sys-

tem. I do not know how this kind of time-sharing was

implemented in SAGE. Did each program have to be sure

to return to an input polling program or were there inter-

rupts? Who invented interrupts anyway?** I thought of

them, but I do not believe I mentioned the idea to anyone

before I heard of them from other sources.

My first attempts to do something about time-sharing

were in the fall of 1957 when I came to the MIT Computa-
tion Center on a Sloan Foundation fellowship from Dart-

mouth College. It was immediately clear to me that time-

sharing the IBM 704 would require some kind of interrupt

system. I was very shy of proposing hardware modifications,

* See Strachey’s response to Knuth in the previous section.

** Alan ScherT reported that the patents on interrupt-driven I/O

are held by three IBM researchers.
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Time-Sharing at MIT

John McCarthy’s 1959 memorandum
To: Professor P.M. Morse
From: John McCarthy
Subject: A Time-sharing Operator

Program for our

Projected IBM 709
Date: January 1, 1959

Introduction

This memorandum is based on
the assumption that MIT will be
given a transistorized IBM 709
about July 1960. 1 want to propose
an operating system for it that will

substantially reduce the time re-

quired to get a problem solved on
the machine. Any guess as to how
much of a reduction would be
achieved is just a guess, but a fac-

tor of five seems conservative. A
smaller factor of improvement in

the amount of machine time used
would also be achieved.

The proposal requires a com-
plete^ revision in the way the

The format of the original memo was
changed for reproduction here.

machine is used, will require a long

period of preparation, the develop-

ment of some new equipment, and a
great deal of cooperation and even
collaboration from IBM. Therefore, if

the proposal is to be considered seri-

ously, it should be considered

immediately. I think the proposal

points to the way all computers will

be operated in the future, and we
have a chance to pioneer a big step

forward in the way computers are

used. The ideas expressed in the fol-

lowing sections are not especially

new, but they have formerly been
considered impractical with the com-
puters previously available. They are

not easy for computer designers to

develop independently since they in-

volve programming system design

much more than machine design.

A quick service computer

Computers were originally devel-

oped with the idea that programs
would be written to solve general

classes of problems and that after

an initial period most of the com-
puter time would be spent in

running these standard programs
with new sets of data. This view

completely underestimated the vari-

ety of uses to which computers

would be put. The actual situation is

much closer to the opposite extreme,

wherein each user of the machine
has to write his own program and
that once this program is debugged,

one run solves the problem. This

means that the time required to solve

the problem consists mainly of time

required to debug the program. This

time is substantially reduced by the

use of better programming lan-

guages such as Fortran. Lisp (the

language the Artificial Intelligence

Group is developing for symbolic ma-
nipulations) and COMIT (Yngve's

language). However, a further large

reduction can be achieved by reduc-

ing the response time of the

computation center.

especially as I did not understand electronics well enough to

read the logic diagrams. Therefore. I proposed the minimal
hardware niodilication I could think of. This involved in-

stalling a relay so that the 704 could he put into trapping
mode hv an external signal. It was also proposed to connect
the sense switches on the console in parallel with relavs that

could he operated bv a Flexowriter.

When the machine went into trapping mode, an interrupt

to a fixed location would occur the next time the machine
attempted to execute ajump instruction (then called a trans-

fer). The interrupt would occur when the Flexowriter had
set up a character in a relay buffer. The interrupt program
would then read the character from the sense switches into

a buffer, test whether the buffer was full, and if not return

to the interrupted program. If the buffer was full, the pro-

gram would store the current program on the drum and read
in a program to deal with the buffer.

It was agreed (I think I talked to Dean Arden only) to

install the equipment, and I believe that permission was
obtained Irom IBM to modify the computer. The connector
to be installed in the computer was obtained.

However, at this time we heard about the "real-time

package” for the IBM 704. This RPO (Request for Price

Quotation was IBM jargon for a modification to the com-
puter whose price was not guaranteed), which rented for

$2,500 per month, had been developed at the request of
Boeing for the purpose of allowing the "04 to accept infor-

mation from a wind tunnel. Some element of ordinary time-

sharing would have been involved, but we did not seek
contact with Boeing. Anyway, it was agreed that the real-

time package, which involved the possibility of interrupting
after any instruction, would be much better than merely
putting the machine in trapping mode. Therefore, we under-
took to beg IBM for the real-time package. IBM's initial

reaction was favorable, but nevertheless it took a long time
to get the real-time package — perhaps a year, perhaps two.

It was then agreed that someone, perhaps Arnold
Siegel.® would design the hardware to connect one
Flexowriter to the computer, and later an installation with
three would be designed. Siegel designed and built the
equipment, the operating system was suitably modified (I

do not remember by whom), and a demonstration of on-line
Lisp was held fora meeting of the MIT Industrial Affiliates.

This demonstration, which I planned and carried out. had
the audience in a fourth-floor lecture room and me in the

computer room and a rented closed-circuit TV system. Steve
Russell, who worked for me. organized the practical details,

including a rehearsal. This demonstration was called time-
stealing. and was regarded as a mere prelude to proper
lime-sharing. It involved a fixed program in the bottom of
memory that collected characters from the Flexowriter in a
butler while an ordinary batch job was running. It was only
after each job was run that a job that would deal with the

* Siegel had engineered a Flexowriter input device on Whirlwind
for Doug Ross’ Data Reduction Project in |V5p.
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The response time of the MIT

Computation Center to a perfor-

mance request presently varies

from 3 hours to 36 hours depending

on the state of the machine, the effi-

ciency of the operator, and the

backlog of work. We propose by

time-sharing, to reduce this re-

sponse time to the order of 1

second for certain purposes. Let us

first consider how the proposed sys-

tem looks to the user before we
consider how it is to be achieved.

Suppose the average program

to be debugged consists of 500 in-

structions plus standard

subroutines and that the time re-

quired under the present system for

an average debugging run is 3 min-

utes. This is time enough to

execute 7,000.000 704 instructions

or to execute each instruction in the

program 14.000 times.

Most of the errors in programs

could be found by single-stepping

or multiple-stepping the program as

used to be done. If the program is

debugged in this way, the program

will usually execute each instruc-

tion not more than 10 times, 1/1400

as many executions as at present.

Of course, because of slow human
reactions the old system was even

more wasteful of computer time

than the present one. Where, how-

ever, does all the computer time

go?

At present most of the computer

time is spent in conversion (SAP-bi-

nary, decimal-binary,

binary-decimal, binary-octal) and in

writing tape and reading tape and

cards.

Why is so much time spent in

conversion and input output?

1 . Every trial run requires a fresh

set of conversions.

2. Because of the slow response

time of the system it is necessary to

take large dumps for fear of not

being able to find the error. The
large dumps are mainly unread, but

nevertheless, they are necessary.

To see why this is so, consider the

behavior of a programmer reading

his dump. He looks at where the

program stopped. Then he looks at

the registers containing the partial

results so far computed. This sug-

gests looking at a certain point in

the program. The programmer may
find his mistake after looking at not

more than 20 registers out of say

1000 dumped, but to have pre-

dicted which 20 would have been

impossible in advance and to have

reduced the 1 000 substantially

would have required cleverness as

subject to error as his program. The
programmer could have taken a run

to get the first register looked at,

then another run for the second,

etc., but this would have required

60 hours at least of elapsed time to

find the bug according to our as-

sumptions and a large amount of

computer time for repeated loading

and re-runnings. The response time

of the sheet paper containing the

dump for any register is only a few

seconds, which is OK except that

one dump does not usually contain

(continued on the following page)

characters typed in would be read in from the drum. This

Sob would do what it could until more input was wanted and

•uld then let the operating system go back to the batch

.•am. This worked for the demonstration, because at cer-

. :i:! hours the MIT Computation Center operated a batch

stream with a time limit of one minute on any job.

Around the time of this demonstration. Herbert Teager

came to MIT as an assistant professor of electrical engineer-

ing and expressed interest in the time-sharing project. Some
of the ideas of time-sharing overlapped some ideas he had

while on his previous job. but I do not remember what they

were. Philip Morse, the director of the Computation Center.
,sked me if I was agreeable to turning over the time-sharing

’

•
ject to Teager. since artificial intelligence was my main

merest. 1 agreed to this, and Teager undertook to design

the three-Flexowriter system. I'm not sure it was ever com-
pleted. There was a proposal for support for lime-sharing

submitted to the National Science Foundation, and money
was obtained. I do not remember whether this preceded

Teager. and I do not remember what part I had in preparing

it or whether he did it after he came. This should be an

important document, because it contains that year’s concep-
’ of and rationale for time-sharing.*

Besides that. IB VI was persuaded to make substantial

modifications to the IBM 709 to be installed at the MIT

Regrettably, we have been unable to locate this proposal, but a
later report on the work is included in this issue.

Computation Center. These included memory protection

and relocation, and an additional 32.768 words of memory
for the time-sharing system. Teager was the main specifier

of these modifications. I remember my surprise when IBM
agreed to his proposals. I had supposed that relocation and

memory protection would greatly slow the addressing of the

computer, but this turned out not to be the case.

Teager s plans for time-sharing were ambitious and, it

seemed to many of us. vague. Therefore. Fernando Corbatd

undertook an "interim" solution using some of the support

that had been obtained from NSF for time-sharing work.

This system was demonstrated some time in 1961 , but it was

not put into regular operation. That was not really possible

until the ARPA support for Project MAC permitted buying

a separate IBM 7090.

Around 1960 I began to consult at BBN on artificial

intelligence and explained my ideas about time-sharing to

Ed Fredkin and J.C.R. Licklider. Fredkin, to my surprise,

proposed that time-sharing was feasible on the PDP-1 com-

puter. This was DEC'S first computer, and BBN had the

prototype. Fredkin designed the architecture ofan interrupt

system and designed a control system for the drum to permit

it to be used in a very efficient swapping mode. He con-

vinced Ben Gurley, the chiefengineer for DEC, to build this

equipment. It was planned to ask NIH (National Institutes

for Health) for support, because of potential medical appli-

cations of time-sharing computers, but before the proposal

could even be written. Fredkin left BBN. I took technical
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information enough to get the entire

program correct.

Suppose that the programmer
has a keyboard at the computer
and is equipped with a substantial

improvement on the TX-0 interroga-

tion and intervention program
(UT3). (The improvements are in

the direction of expressing input

and output in a good programming
language). Then he can try his pro-

gram. interrogate individual pieces

of data or program to find an error,

make a change in the source lan-

guage and try again.

If he can write the program in

source language directly into the

computer and have it checked as
he writes it, he can save additional

time. The ability to check out a pro-

gram immediately after writing it

saves still more time by using the

fresh memory of the programmer. I

think a factor of 5 can be gained in

the speed of getting programs writ-

ten and working over present

practice, if the above mentioned fa-

cilities are provided. There is

another way of using these facilities

which was discussed by S. Ulam a

couple of years ago. This is to use
the computer for trial and error pro-

cedures where the error correction

is performed by a human adjusting

the parameters.

The only way quick response

can be provided at a bearable cost

is by time-sharing. That is, the com-
puter must attend to other

customers while one customer is re-

acting to some output.

The problem of a time-sharing

operation system

I have not seen any comprehen-
sive written treatment of the

time-sharing problem and have not

discussed the problem. This treat-

ment is certainly incomplete and is

somewhat off-the-cuff. The equip-

ment required for time-sharing is

the following.

a. Interrogation and display de-

vices (Flexowriters are

charge of the project as a one-day-a-week consultant, and
Sheldon Boilen was hired to do the programming. I rede-

signed the memory extension system proposed by DEC and
persuaded them to build the modified system instead of the

two systems they were offering, but fortunately had not

built. I also supervised Boilen.

Shortly after this project was undertaken. DEC decided to

give a PDP-l to the MIT Electrical Engineering Department.

Under the leadership of Jack Dennis.* this computer was
installed in the same room as the TX-0 experimental transis-

torized computer that had been retired from Lincoln Labora-

tory when the TX-2 was built. Dennis and his students under-

took to make a time-sharing system for it. The equipment was
similar, but they were given less memory than the BBN project

had. There was not much collaboration.

My recollection is that the BBN project was finished first

in the summer of 1962. but perhaps Corbato remembers
earlier demonstrations of CTSS.** I left for Stanford in the

fall of 1962. I had not seen CTSS. and I believe I had not

seen Dennis’ system operate either. BBN did not operate

the lirst system and did not even fix the bugs. They had few

computer users and were content to continue the system

whereby users signed up for the whole computer. They did

* Earl Pugh of the Electrical Systems Laboratory, which wasgiven
the responsibility for the PDP-l. did the original installation and
operation of the PDP-l. (Note added by Doug Ross during review,

j

** See Time Line. pp. 14-15.

possible but there may be
something better and
cheaper);

b. An interrupt feature on the

computer; we’ll have it; •

c. An exchange to mediate be-

tween the computer and the

external devices. This is the most

substantial engineering problem,

but IBM may have solved it.

In general the equipment re- i

quired for time-sharing is well

understood, is being developed for

various advanced computers, e.g.,

Stretch, TX-0, Metrovich 1010,

Edsac 3. 1 would not be surprised if

almost all of it is available with the

transistorized IBM 709. However,
the time-sharing has been worked
out mainly in connection with real- a

time devices. The programs
sharing the computer during any
run are assumed to occupy pre-

scribed areas of storage, debugged
already, and to have been written

together as a system. We shall

have to deal with a continuously

undertake a much larger follow-on project involving a time- i

shared PDP-l that was installed in Massachusetts General
|

Hospital, where it was not a success. The computer was I

inadequate, there were hardware and software bugs, and
there was a lack of application programs— but mainly the

project was premature.

At the same time that CTSS. the BBN system, and the

Electrical Engineering Department systems were being de-
veloped. MIT had started to plan for a next-generation

computer system. The management of MIT evidently

started this as an ordinary university planning exercise and
appointed a high-level committee consisting of Philip

Morse. Albert Hill, and Robert Fano to supervise the effort.

However, the actual computer scientists were persuaded
that a revolution in the way computers were used was called

for. The lower level committee was chaired by Teager, but
after his ideas clashed with those of everyone else, the

committee was reconstituted with me as chairman. The
disagreement centered around how ambitious to be and
whether to go for an interim solution. Teager wanted to be
very ambitious, but the rest of us thought his ideas were
vague. He wanted MIT to acquire an IBM 7030 (Stretch)

computer as an interim solution. As it turned out, acquiring
a Stretch would have been a good idea.

Our second report to MIT proposed that MIT send out
a request for proposals to computer manufacturers. On the

basis of the responses, we would then ask the government
for the money. The RFP was written, but MIT stalled.
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changing population of programs,

most of which are erroneous.

The major problems connected

with time-sharing during program

development seem to be as follows:

1 . Allocating memory automati-

cally between the programs. This

requires that programs be assem-

bled in a relocatable form and

have a preface that enables the

operator program to organize the

program, its data, and its use of

common subroutines.

2. Recovery from stops and

loops. The best solutions to these

problems require:

a. Changing the stop instruction

to trap instructions. This is a

minor modification to the ma-
chine. (At least it will be

minor for the 704.)

b. Providing a real-time alarm

clock as an external device.

3. Preventing a bad program

from destroying other programs.

This could be solved fairly readily

with a memory range trap which

might not be a feasible modifica-

tion. Without it, there are

programming solutions which are

less satisfactory but should be
good enough. These include:

a. Translations can be written

so that the programs they

produce cannot get outside

their assigned storage

areas. A very minor modifi-

cation would do this to

Fortran.

b. Checksums can be used for

machine language programs.

c. Programming techniques can

be encouraged which make
destruction of other programs

unlikely.

d. There is an excessive ten-

dency to worry about this

point. The risk can be

brought down to the present

risk of having a program ru-

ined by operator or machine

error.

Summary

a. We may be able to make a

major advance in the art of '"'-f

using a computer by adopting •

a time-sharing operator pro-

gram for our hoped-for 709.

b. Such a system will require a

lot of advance preparation

starting right away.
VrV "

?C: 'Air:

c. Experiments with using the

Flexowriter connection to the

real-time package on the 704

will help, but we cannot wait

for the results if we want a

time-sharing operator pro-

gram in July 1960.

d. The cooperation of IBM is

very important, but it should

be to their advantage to de-

velop this new way of using a

computer.

e. I think other people at MIT
than the Computation Center

staff can be interested in the

systems and other engineer-

ing problems involved.

perhaps for two reasons. The first reason was that our initial

cost estimates were very large for reasons of conservatism.

Second. IBM asked MIT to wait, saying that they would

..‘•ike a proposal to meet MIT’s needs at little or no cost.

Unfortunately, the System/360 design took longer than IBM
management expected, and along about that time, relations

between MIT and IBM became very strained because of the

patent lawsuit about the invention of magnetic core mem-
ory.

As pan of the stall, president Stratton proposed a new
study with a more thorough market survey to establish the

demand for time-sharing among MIT computer users. I

regarded this as analogous to trying to establish the need for

.'cam shovels by market surveys among ditch diggers, and
' did not want to do it. About this time George Forsythe

invited me to come back to Stanford with the intention of

building a Computer Science Department, and I was happy

to return to California.

In all this, there was not much publication. I wrote a

memo to Morse dated January 1, 1959, proposing that we
time-share our expected '‘transistorized IBM 709.” It has

been suggested that the date was in error and should have

cen 1960. 1 do not remember now, but I believe that if the

memo had been written at the end of 1959, it would have

reterred to the 7090, because that name was by then current.

In that memo I said the idea of time-sharing was not espe-

cially new. I do not know why I said that, except that I did

not want to bother to distinguish it from what was done in

the SAGE system with which 1 was not very familiar.

Most ofmy argumentation for time-sharing was oral, and

when I complained about Fano and Corbato crediting

Strachey with time-sharing in their 1966 ScientificAmerican

article, Corbatd was surprised to find my 1959 memo in the

files. Their correction in Scientific American was incorrect,

because they supposed that Strachey and I had developed

the idea independently, whereas giving each user continu-

ous access to the machine was not Strachey’s idea at all. In

fact, he did not even like the idea when he heard about it.

Teager and I prepared a joint abstract for an ACM
meeting shortly after he arrived, and I gave a lecture in an

MIT series called Computers and the World ofthe Future?*

In this lecture I referred to Strachey’s paper “Time-sharing

in Large Fast Computers”43 given at the 1959 IFIP Congress

in Paris. I had read the paper carelessly, and supposed he

meant the same thing as I did. As he subsequently pointed

out, he meant something quite different that did not involve

a large number of users, each behaving as though he had a

machine to himself. As I recall, he mainly referred to fixed

programs, some of which were compute bound and some
input-output bound. He did mention debugging as one of

the time-shared activities, but I believe his concept involved

one person debugging while the other jobs were of the

conventional sort.

My 1959 memo advertised that users generally would get

the advantage of on-line debugging. However, it said noth-
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ing about how many terminals would be required and where
they would be located. 1 believe I imagined them to be
numerous and in the users' offices, but I cannot be sure.

Referring toan “exchange" suggests that I had in mind many
terminals. 1 cannot now imagine what the effect was on the

reader ofmy failure to be explicit about this point. I'm afraid

1 was trying to minimize the difficulty of the project.

The major technical error of my 1959 ideas was an un-

derestimation of the computer capacity required for time-

sharing. I still do not understand where all the computer
time goes in time-sharing installations, and neither does

anyone else.

Besides MIT's NSF proposal, there ought to be some
letters to IBM and perhaps some IBM internal documents
about the proposal, since they put more than a million

dollars worth of equipment into it. Gordon Bell discusses

DEC’S taking up time-sharing in the Bell/Newell book." but

I do not recall that they discuss Ben Gurley's role. Fredkin

and perhaps Allan Kotok would know about that.

After I came to Stanford. I organized another PDP-i
time-sharing project. This was the first time-sharing system

based on display terminals. It was used until 1969 or 1970

for (Patrickj Suppes' work on computer-aided instruction.

Excerpts from “Man-Computer
Symbiosis ”28

About the.same time McCarthy was writing his memoran-
dum to Morse on the mechanics of time-sharing. J.C.R.

Licklitler was investigating the concept of man-computer
symbiosis, apremonition ofman-machine cooperation which

is even today not wholly achieved. The following selection

from Licklider's "Man-Computer Symbiosis" is reprinted

with permission from IRE Transactions on Human Factors

in Electronics. March I960 ( Z 1960 IRE (now IEEE)).

Man-machine symbiosis is an expected development in

cooperative interaction between man and electronic com-
puters. It will involve close coupling between the human and
electronic members of the partnership. The main aims are

I) to let computers facilitate formulative thinking as they

now facilitate the solution of formulated problems, and 2)

to enable man and computers to cooperate in making deci-

sions and controlling complex situations without inflexible

dependence on predetermined programs. In the anticipated

symbiotic partnership, men will set the goals, formulate the

hypotheses, determine the criteria, and perform the evalu-

ations. Computing machines will do the routinizable work
that must be done to prepare the way for insights and

decisions in technical and scientific thinking. Preliminary

analyses indicate that the symbiotic relationship will per-

form intellectual operations much more effectively than

man alone can perform them. Prerequisites for the achieve-

ment of the effective, cooperative association include devel-

opments in computer time-sharing, in memory components.

* More likely: CG. Bell. J.C. Mudge. and J.E. McNamara. Com-
puter Engineering. Digital Press. Bedford. Mass.. 1978.

in memory organization, in programming languages, and in

input and output equipment.

In one sense of course, any man-made system is intended

to help man. to help a man or men outside the system. If we
focus upon the human operator(s) within the system, how-
ever. we see that, in some areas of technology, a fantastic

change has taken place during the last few years. “Mechan-
ical extension" has given way to replacement of men. to

automation, and the men who remain are there more to help

than to be helped. In some instances, particularly in large
|

computer-centered information and control systems, the ?

human operators are responsible mainly for functions that
\

it proved infeasible to automate. Such systems are not svm- \

biotic systems. They are “semi-automatic” systems, systems i

that started out to be fully automatic but fell short of the i

goal. {

It seems entirely possible that, in due course, electronic \

or chemical “machines’’ will outdo the human brain in most
\

of the functions we now consider exclusively within its prov- i
ince.

It is often said that programming for a computing ma- !

chine forces one to think clearly, that it disciplines the i

thought process. If the user can think his problem through
|

in advance, symbiotic association with a computing machine 1

is not necessary. i

However, many problems that can be thought through in
|

advance are very difficult to think through in advance. They 4

would be easier to solve, and they could be solved faster. \
through an intuitively guided trial-and-error procedure in i

which the computer cooperated, turning up flaws in the

reasoning or revealing unexpected turns in the solution.
|

Poincare anticipated the frustration of an important group
|

of would-be computer users when he said “The question is J

not ‘What is the answer?' The question is ‘What is the
|

question?"' One of the main aims of man-computer svmbi- I

osis is to bring the computing machine effectively into the
|

formulative parts of technical problems. The other aim is i

to...bring computing machines effectively into the processes J
of thinking that must go in “real time." time that moves too |
fast to permit using computers in conventional ways.

Later Licklider was instrumental in not only initiating the %
concept ofan extensiveproject which wouldhavesimilaraims J
to those expressed in his I960 paper, but also he was in a j

position to provide the funding for that work! His train ride |
with Robert Fano from Hot Springs, Va„ to Washington,

D. C. (probably aboard the “Crescent") gave them the oppor-
tunity to realize that ARPA needs could be met through the

capabilities ofthe MITgroup. In our interview with Licklider

and Fano we asked them of their recollections of this trip.

Teager’s recommendation tor an IBM
7030

48

The two studies that preceded the formalization of the

MIT activity, which led first to the development of the Com-
patible Time-Sharing System (CTSS) and eventually to Proj-
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ect MAC. have been mentioned both by McCarthy in his

recollections and later by the respondents in the interviews.

The first study group report, written by Herbert Teager,

•nnmended the acquisition of an IBM 7030 (Stretch),

.ugh Teager recognized that he was unable to obtain all

.. .v necessary data regarding its capabilities, and the support

software was an unknown factor. Retrospectively, Teager's

arguments were sound; his choice of the IBM Stretch was

unfortunate.

MIT should obtain, within the next two to three years,

an ultra large capacity computer, develop time-shared re-

mote input-output facilities complete with display and

: .iphical input capability, and begin an intensive effort to

. elop advanced, user oriented programming languages

:or this system. This policy would seem the best possible way

tor MIT to obtain a research facility to multiply the intellec-

tual effectiveness of the experimental and theoretical re-

search workers and teachers in all fields. The policy would

at the same time provide a necessary experimental tool for

frontier research in many fields involving physical simula-

tion, information processing, and real-time experimental

work, which would otherwise be unfeasible.

The machine should have sufficient capacity and be of

.i.ficientlv advanced design so that it would have a useful

: >0 of at least six years, before any further change need be

contemplated.

Based upon presently-published specifications for exist-

ing machines, the IBM 7030. Stretch Computer is a suitable

candidate for the recommended computer, by virtue of its

speed, memory size, and overall capacity and capabilities.

Published data for Stretch, while not including some

important, but presently unknown factors such as reliability

T.d mean, error-free running time, does indicate that the

'utmercial version of this machine will come very close to

noting its specifications. Several have been built, and pro-

grams are operating on this machine as the last of the “bugs"

are being wrung out. Other announced machines are either

unsuitable or else are in such an early stage of development

that specifications and costs are too vague for an objective

appraisal.

The final decision for the central computer should be

made on a basis of its installation within a maximum period

0 : perhaps three years [emphasis added): a minimum set of

-n :ed. reliability, memory size, and overall capacity require-

ments: and finally the relative cost for such unit capacity.

Presently unknown commercial machines might conceiv-

ably prove a better choice if they could meet these criteria,

and in any event other manufacturers should be given a

chance to bid.

In order to properly prepare for such a machine, it is

believed that the machine design and programming specifi-

cations would have to be firm within a year at most. Before

IBM or any other computer manufacturer can be directly

T reached at a high level for performance specifications

J,1 “ bids, it is believed that an early policy decision with

respect to MIT's intentions is necessary'.

The present trend towards additional separate comput-
ers would appear an unsatisfactory overall solution to MIT’s

problems in this area from a standpoint of both cost and

overall performance. Far more serious, however, is the fact

that the chance to provide the needed capacity in the form

recommended by this Report may well become impossible

in the face of the developments and acquisitions of these

many divergent groups unless a decision is made very soon.

Making the capacity of a powerful

machine more directly available to

each user will multiply its

effectiveness and eliminate the

drawbacks of a large central machine.

Analyses based upon costs and characteristics of existing

commercial machines made during the course of this study

tend to show that computer capacity is far more economi-

cally provided by a single, very large capacity machine,

rather than by many separate medium- to small-scale ma-

chines. In addition, there are vital research problems scat-

tered in all fields of interest to the Institute which must have

vast memory sizes and extremely high processing speeds if

they are to be solved within feasible running times. Separate

machines which may have either a vast memory or high

speed are thus highly inefficient and overly costly both in

total time and money for the solution of these problems.

Providing a capacity of the type necessary can most econom-

ically be achieved by the rental or purchase of the largest,

fastest available commercial machine such as the IBM
Stretch computer. There is. at present, no other existing

machine or combination of machines that can achieve com-

parable computation costs and rates.

Making the capacity of a powerful machine more directly

available to^each user will multiply its effectiveness, and

eliminate the drawbacks of the use of a large central ma-

chine such as have been experienced at MIT. The MIT
Computation Center is as well administered as any other

comparable facility with a load of similar nature and magni-

tude. Nearly 400 distinct problems are active at the Center

at any given time, and to fairly distribute the available time,

amounting to less than half of that requested, among large

numbers of anxious users, leads to difficulties. These be-

come even greater as nearly 100 competing users attempt to

use the machine on an average day. The net result from the

user’s viewpoint is excessive paper work to achieve inade-

quate time grants, long turnaround times between program

submission and results, and thus, an overall slowdown in

research. There would be little justification for an extremely

high capacity central facility which compounded these

shortcomings on a larger scale. Fortunately, however, there

is strong technical evidence that it need not.

While some of the faculty members are aware of com-

puters and programming developments with a potential

application in their field, they are even more aware of the

present usage difficulties. Programming for them, even in

the so-called advanced languages, tends to be tedious, not

easily applicable to their own work, and requiring knowl-
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edge ol lar loo many conventions and exceptions. Other
obstacles are the uninterrupted hours required to program
and debug belore finally getting any results, in the face of
an overcrowded faculty day. and an overworked facility.
They cannot allord to wait for the presently necessaryweeks
of elapsed time between problem formulation and machine
solution.

The difficulty of administering a large central machine
can only be overcome if a time-shared central machine is
brought out to many simultaneous users in the form of
remote input-output "consoles" which have all the charac-
teristics ol a user's own personal computer with respect to
access, a known available capacity, and a minimum of usage
formalities. Such a console would provide far more capacity
and capability than the user could afford for the same cost
in a machine of his own. [See Figure 2.] Such capacity, in
addition to speed, would allow the user to "program" in
languages that are closely allied to that of his field, and in
addition, eventually allow him to use pencil and paper
should he dislike or be unable to use a keyboard to commu-
nicate his problem to the machine. It would also provide
graphical display and a permanent record of all work: such
capability would go a very long way towards attracting a
sizable traction of the faculty who could use computers" to
extreme advantage, but who cannot spare the protracted
time requirements ol present usage, as well as realizing the
benefits of computers as a classroom aid.

During evenings, nights and weekends, the system de-
scribed would have adequate capacity to run verv large
problems, which might require the total capacity of the
central machine, or the work of groups which might not be
compatible with or desirable for time-sharing. This would
be a minor restriction upon such groups.

Although development programs are already underway
tor the high capability, low-cost console described, time-
sharing techniques and remote input-output stations
equipped with typewriters presently exist. A large part of
the access problem described can be solved today"with very
little further development, and thus the entire program does
not hinge on the possible gamble that to develop the high-
capability languagesand facilities might take longer than the
indicated three-year time period. To provide “the central
facility will be costly, as will the programming effort to
provide the needed languages, and to a lesser extent the
development and procurement of a large number of high-
capabilitv remote facilities. But it would" seem the cheapest
wav of providing the needed capacity, and the only wav of
providing the necessary, close man-machine interrelation-
ship which is felt vital for research in the years to come.

One of the most common complaints made bv users in
the course of the survey of all MIT research projects was that
it was extremely difficult to find competent programmers,
who could translate their desires into machine programs.
This is a symptom of a much longer range problem, i.e.,

non-faculty usage, and calls for a longer range solution.
For any intellectual tool to be used, it must have a

response time roughly comparable to that of the person
using it: otherwise it may well slow down, rather than speed
up. the overall rate of the man and machine. The net result

will be that the user does not use the tool, even though it
could be of material assistance to him.

It is believed that the relatively small percentage of the
I IT faculty who are using computers directly, and the

rather limited amount of such usage, is due primarily to the
tedious nature of present day programming languages and
the inescapable fact that it requires a minimum o“f 2-4 weeks
to get a moderately complex program written in the best
available language to operate... For most senior researchers
this time lag provides a sufficiently strong barrier to keep
them from using machines at all.

Much has already been made in this study of the fact that
i 1IT faculty are not directly using computers but are rather
working through middlemen, in the form of research staff
and graduate student programmers. More will be made of
the ineptitude of present languages, which results in many
debugging and compiling runs before a problem is finally

ready tor the “production" which was its raison d'etre. Due
to present administration policies and computation loads,
most of the total elapsed time in getting to production is
spent tn the presently inevitable [emphasis added] waits of
turnaround times between submissions in the succession of
reruns.

The net result is to force highly skilled personnel to
remain idle tor long periods of time, unless sufficient ma-
chine time is granted so that they are working on several
problems at the same time, but having to constantly "shift
mental gears and rethink programs.

As their efficiency decreased (due to the long turnaround
times and small time grants) so does morale, and not having
the satislaction of seeing their work come to earlv fruition”
the best of them leave.

No study was made of this area, but from many personal
contacts and discussions it is estimated that no croup at MIT
can expect to hire and keep good qualified procrammers for
much longer than about 1 ^ years. Many groups have suf-
fered almost 100 per cent casualties inside of three vears.
This is not. it is believed, a question of salaries.

The effect ofsuch a turnover rate, the constant loss of the
best and most talented people, and the training of far less
capable ones to take their place are highly detrimental and
costly to the research work of MIT. This problem too, it is
believed, can be alleviated.

In the past, many cogent and pressing arguments have
been presented for separate small- to medium-scale comput-
ers for use by many of the research groups around Tech.
Although a variety of reasons have been given for this form
of private enterprise, the basic reasons it is believed are ones
of access and possession. A researcher in general regards a
computer as a tool (ranging in power from an intelligent
assistant to a desk calculator, depending upon his inclination
and familiarity) and. as with all other tools, feels that its
effectiveness is measured in part by his degree of access to
it. and the degree to which he can count on using it when he
wants to. If it is located in close proximity to his other work
all the better.

It is thus believed that the only fair and workable ar-
rangement to divide the large machine’s capacity is to assure
each large user a fixed minimum share of the large machine’s
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capacity, on call to him at any time he needs it, so that it has
all the properties of a personal machine. If properly com-
bined with remote facilities and languages, the user will be
much happier with a percentage of a larger, and far more
efficient data processor, than he would be with a much more
::mited capability machine of his very own. After all, as far

‘s concerned, there would be no way of telling the
Terence, outside the fact that the time-shared facility

would be far less costly to him. far easier to administrate,
and much more powerful.

There is every indication that MIT will need at least a
20-100 fold increase in its available computer capacity
within the next three years if it is to continue and accelerate
its use of computers as an intellectual tool for research and
teaching. The major alternatives for providing this capacity
‘••re the following:

!• Continue the present policy of allowing separate
groups to provide theirown separate facilities as pres-
ent computer 'facilities become less and less able to
meet their requirements.

2. Purchase or rent an extremely large central ma-
chine with adequate remote facilities to satisfy the
projected needs and requirements of the various
user groups.

3. Design or build our own large computer that would
have the same or better capacity as would be provided
by a machine that is available commercially, using

presently existing components and machine organiza-
tion techniques.

4. Designing or build our own large computer, using

“state of the art" components, and the most advanced
concepts ofmachine and system organization that can
be obtained from the foremost experts in the field,

whether they are at MIT, Lincoln, Rand, or else-

where.

Of these major alternatives, buying a suitably modified
commercial machine, and in particular Stretch, seems by far

the most advantageous.
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Minsky and Teager

Interestingly, in the workshop
which formed the basis for the book
Computers and the World of the Fu-
ture by Martin Greenberger,
McCarthy says

The material I shall present
on computer-system design
was developed jointly with
Marvin Minsky. I also want
to acknowledge the stimulat-
ing effect of discussions
with Professor Herbert M.
Teager and Dr. F.J.

Corbato, who are develop-
ing time-sharing systems for

the IBM 7090 at the MIT
Computation Center.

This contains one of only a few
references to Marvin Minsky’s con-
tribution to the development of the
concept; one other reference is in

one of the translations of "MAC"
provided by Peter Elias:

Machine Aided Cognition

Man And Computer
Minsky Against Corbato

Others have also provided Multiple

Access Computer.

McCarthy also implies, and this

was confirmed during the inter-

views, that Teager was proceeding
with his own plans in parallel with

Corbato. Teager’s work was de-
scribed in the Communications of
the ACM in a 1 962 reprint49 of an
earlier research report; “Real-Time,
Time-Shared Computer Project,”

Computation Center and Research
Laboratory of Electronics, MIT,
Cambridge, Mass. Reported by Her-
bert M. Teager (Nov. 1961). Some
excerpts follow (copyright 1962. As-
sociation for Computing Machinery,
Inc., reprinted by permission);

The objective of this proj-

ect is to develop devices,

systems, and languages for

the fruitful interaction be-
tween scientists and
computers, using the com-
puter as a powerful, on-line

aid to understanding. Due to

cost and computer capacity

considerations, this ability

can best be provided within

the context of time-sharing a
slightly modified, standard
memory size computer,

equipped with random ac-
cess files, among many
low-cost simultaneously oper-
ating remote consoles, each
equipped with low data rate

graphical and character-pro-

ducing input-output devices.

The major accomplish-

ments of this project over the
past calendar year are the fol-

lowing. On-line programming
and computation utilizing a
system of multiple indepen-
dent typewriters has been
tested. An existing digital plot-

Long Range Computation Study
Group’s recommendation for a
time-sharing system .

1

flic conclusions anti recommendations ofthe Teager re-
port did not reflect the views ofthe majority ofthe committee.
I hits, a second report was submitted that recommended the
net/nisition o f not just a large computing system, but also a
system capable ofsupporting timesharing.

Ihe second report ofthe Long Range Computation Study
Croup was presented to Albert llill in April 1961.

The major part of MIT's computational needs, a few
years from now. can best be met by a single very high speed
large-capacity computer system with provision for time-
sharing through a number of remote consoles.

Present estimates of the cost ofsuch a system lie between
$8 and $25 million for a suitable central machine, including
the development and procurement of remote input-output
equipment, and the development of programming lan-
guages and systems appropriate for time-shared operation.
However, this system would be the cheapest way of provid-
ing the needed capacity and the only way of providine the
necessary, close man-machine interrelationship that we feel
is vital for research in the years to come.

%

The committee is convinced that the bulk of scientific
calculation is certain to increase rapidlv and that it would be
uneconomical, even if feasible, to try to keep pace with this
growth by the addition of more and more standard ma-
chines. although there are areas in which separate machines
maybe valuable. Therefore, steps should be taken to acquire
a giant machine meeting the specifications presented subse-
quently.

Tile conclusion that a central computer nith remote con-
soles is required is based not only on the important economy
obtained, both in running expenses and in programming ex-
penses. but also on the importance of establishing close com-
munication between the scientist and the machine. Thus, the
committee feels that it is essential to provide for operating the
machine in a time-sharing mode to provide immediate service
to each of a large number of users simultaneously operating
remote consoles throughout the Institute.

It IS remarkable that, despite the many views and needs
represented by members of the committee, there were es-
sentially no compromises involved in coming to this general
conclusion. Such a high-speed computing system having a
very large memory and remote time-sharing operation
meets the needs of very different kinds of pro;Jets, ranging
from the numerical computations or physics, engineering
and meteorology, to the symbolic computations of language
translation and artificial intelligence projects.
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ter has been connected to

the IBM 709 computer, and
a special-purpose computer

to control multiple indepen-

dent plotters is being

constructed. A prototype of

a high resolution graphical

input device for hand-drawn
figures and symbols is

being built. Design modifica-

tions to trie 7090 computer
have been proposed and are

being incorporated in our

forthcoming machine. Sched-
uling systems for

time-sharing and memory al-

location nave been simulated

and found satisfactory. An in-

formation retrieval system for

programs and data is being

designee. Programming sys-

tems to ailow handwriting as
a valid input are being

checkea cut, and new graphi-

cal languages for several

major prcblem classes for

input and output have been
partially soecified.

REFERENCES:
Teager, H. Dec. 1960. Mar-
riage of on-line human
decision with computer pro-

grams. Naval Res. Logist.

Quart., 379-383.

As indicated in the interviews later,

Teager apparently concentrated on
the design of interactive input-output

devices connected to the IBM 709 at

the same time as Corbato was imple-

menting CTSS on the same machine.
In the above communication, Tea-

ger refers to a prior paper presented at

George Washington University in

1 960, which appears to provide the mo-
tivation for his work. This motivation,

typified here by the abstract from that

paper, has a strong resemblance to

Licklider’s man-computer symbiosis

concept.

As the logistics problems of cur-

rent interest become more and
more complex, it becomes ap-

parent that heuristic methods
hold more promise than exhaus-
tive or algorithmic methods of

solution. It is also becoming
clearer that heuristics, per se,

are useless in approaching

large combinatorial problems
(via pattern recognition, for

example), unless some gen-
eral techniques are

developed to draw out the

specific “best” heuristics re-

quired for each problem. It is

a fact that humans are, at

present, far more efficient in

developing and applying

such heuristics than a ma-
chine. It is therefore of

considerable value to explore

how the best features of both

human and machine decision

can be married. The general

problem requires the develop-

ment of common meaningful

languages, specialized input-

output display and entry

facilities, and a means of

time-sharing the computer, in

order to efficiently match
the machine versus the

human-decision time.47

r v:islbility of propo.sed system

.Aii components of the propo.sed central computer sys-
tem either exist or can be developed during the time neces-
sary for the procurement of the central computer. For ex-
ample. time-sharing arrangements using remote
input/output stc.ions equipped with typewriters presently
exist. Further study is needed in the areas of console speci-
tications. programming languages and system administra-
tion. but the Study Group is confident that the present
commendations are not dependent upon the results of

-tudies. Ir. defining these areas, it is merely recoeniz-
me need to present a full picture of future work.
The final choice for the central computer should be based

on whether it can be installed in three years and will meet
the set of general specifications [presented in Part III of this
report). There are two feasible alternate wavs to acquire
such a computer. The first is to purchase or rent one of the
very large commercially available computers, such as the
IBM 7030. commonly known as "Stretch." With minor mod-
' ‘ “u 'ons and provisions of time-sharing facilities, this com-

er will mec: many of the requirements. The second
--.cl native is to nave a manufacturer construct a computer
recording to our specifications, making full use of any ad-
^anced components which he may have.

It is not possible at this time to make any kind of firm
cost estimate, since the committee has not yet been in direct
contact with manufacturers. A suitable system based on the
IBM Stretch computer would, at rumored prices, cost be-
tween S20.000.000 and $25,000,000. Much of this cost would
be the cost of memory. Some of the members of the com-
mittee believe that the cost of a suitable system may be as
little as seven or eight million, but others are not convinced.

The importance of time-sharing

The main conclusion of this report is not just that MIT
acquire a very large computer system, but that the computer
system be a time-sharing one. accessible to its users through
remote consoles and accessible to laboratory apparatus
through suitable data transmission facilities. The reason for
this emphasis on time-sharing is because the greatest short-
age at MIT is not in computer speed but in interaction

capability with the users and with the users’ laboratories. In
fact, the increase in interaction capability made possible by
the time-shared system will have as much impact on MIT
research as the introduction of automatic computation in

the first place.

A single, very' large, time-shared system is recommended
for the following reasons:
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1. Only a very large computer can satisfy the needs of
users with very large problems.

2. Only a time-sharing system can make possible effi-

cient use of large capacity by many small users.

3. Only a very large secondary storage system can con-
tain all programs and data and make them rapidly
available to the computer under the control of simple
consoles.

4. Only a single large system with many users can pro-
vide a sufficient base to support the large effort re-

quired to provide advanced public programs to all

users on an adequate scale.

5. Only a time-sharing system can provide the interac-

tion capability which, especially when combined with
advanced programming and control languages, is so
essential to improved computer utilization in re-

search.

Specifications for central computer

The general scale and characteristics of the central com-
puter are indicated by the following specifications:

1. An advanced indexing and addressing system, fixed

and floating point arithmetic, and a full complement
of logical and variable length operation.

2. Average program running speed of at least 106 in-

structions per second.

3. 250.000 to 1,000.000 words of directly addressable
memory, each word at least 48 bits.

4. Full time-sharing facilities including memorv protec-
tion. interrupt capability, and non-stop operation.

5. Provision for a system of remote consoles.
6. Capability for real-time interaction with laboratory

apparatus at a rate of 250.000 words/sec.

7. Secondary storage of more than 10
7 words with an

access time of about .1 sec. and a data rate of 250.000
words/sec.
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CTSS — The Compatible Time-Sharing
System

I
mmediately after — if not before — the presentation of

the Long Range Computation Study Group report to

Albert Hill. Fernando Corbato began to develop an exper-

imental system that would show the feasibility of a time-

shared system such as that envisaged by several members of

the group. Within a very short time, he was able to demon-
strate the first steps in this direction, as shown in the follow-

’>? excerpts from a 1962 paper he coauthored with Marjorie

."win-Daggett and Robert C. Daley. The selection from
••>4 paper, which reported work completed in late 1961, is

reprinted from Pw. Spring Joint Computer Conf. Vol. 21

(© 1962 AFIPSi.

Excerpts from “An Experimental

Time-Sharing System ” 14

Before proceeding further, it is best to give a more
...ise interpretation to time-sharing. One can mean using

•
' -rent parts of the hardware at the same time for different

tasks, or one can mean several persons making use of the

computer at the same time. The first meaning, often called

multiprogramming, is oriented towards hardware efficiency

in the sense of attempting to attain complete utilization of
all components. The second meaning of time-sharing, which
is meant here, is primarily concerned with the efficiency of

persons trying to use a computer. Computer efficiency

'•’nould still be considered but only in the perspective of the
' system utility.

An experimental time-sharing system has been devel-

oped. This system was originally written for the IBM 709 but
has been convened for use with the 7090 computer.

The 7090 of the MIT Computation Center has, in addi-
tion to three channels with 19 tape units, a fourth channel
with the standard Direct Data Connection. Attached to the

Direct Data Connection is a real-time equipment buffer and
control rack designed and built under the direction of H.
I’cager and his group. This rack has a variety of devices
;,r -vhed but the only ones required by the present systems

. fl’.ree Flexowriter typewriters. Also installed on the 7090
>irc two special modifications (i.e.. RPQ’s): a standard 60-

cvcle accounting and interrupt clock, and a special mode
which allows memory' protection, dynamic relocation and

trapping of all user attempts to initiate input-output instruc-

tions.

In the present system, the time-sharing occurs between
four users, three of whom are on-line each at a typewriter

in a foreground system, and a fourth passive user of the

background FAP-MAD-MADTRAN-BSS Monitor Sys-

tem (FMS) used by most of the Center programmers and by
many other 7090 installations.

Significant design features of the foreground system [for

the user] are [that he can]:

1. Develop programs in languages compatible with the

background system.

2. Develop a private file of programs.

3. Start debugging sessions at the state of the previous

session, and
4. Set his own pace with little waste of computer time.

The foreground system is organized around commands
that each user can give on his typewriter and the user’s

private program files which presently (for want of a disc [sic]

unit) are kept on a separate magnetic tape for each user.

The commands are typed by the user to the time-sharing

supervisor (not to his own program) and thus can be initi-

ated at any time regardless of the particular user program
in memory. For similar coordination reasons, the supervisor

handles all input/output of the foreground system typewrit-

ers. Commands are composed of segments separated by
vertical strokes: the first segment is the command name and
the remaining segments are parameters pertinent to the

command. Each segment consists of the last 6 characters

typed (starting with an implicit 6 blanks) so that spacing is

an easy way to correct a typing mistake. A carriage return

is the signal which initiates action on the command. When-
ever a command is received by the supervisor, “WAIT” is

typed back, followed by “READY” when the command is

completed. (The computer responses are always in the op-

posite color from the user’s typing.) While typing, an incom-

plete command line may be ignored by the “quit” sequence

of a code delete signal followed by a carriage return. Simi-

larly, after a command is initiated, it may be abandoned if a

“quit” sequence is given. I n addition, during unwanted com-
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The CTSS Interviews

Location:

Laboratory for Computer Science
Fifth-Floor Conference Room
Massachusetts Institute of Technology
545 Technology Square

Cambridge, Mass.

Date:

October 18, 1988

f

Interviewers:

Robert Rosin, Editor, IEEE Annals of the History of Computing
John AM. Lee, Editor-in-Chiet, IEEE Annals of the History of Computing

Participants:

Fernando J. Corbato

Allan L. Scherr

Douglas T. Ross

Martin Greenberger

O n the day following the celebration of the 25th anni-
versary of Project MAC held in Cambridge on Octo-

ber 16 and 17. 1988. two small groups of participants in the
developments of CTSS and Project MAC met to exchange
recollections about their activities. These interviews are

•’rated into two parts, concentrating on each of the two
-iopmental stages of time-sharing, although it was im-

•'

.

" s,^e lo strictly maintain the separation since the discus-
sions naturally overlapped the time periods. By choice, the
interviewers guided the discussion to concentrate on the
more personal and background aspects of this history, since
the technological history has been well documented in the
open literature. (See the References and Bibliography sec-
tion on pp. 52-54.) The footnotes and reference citations
‘•vere added during editing.

biographical sketches — Corbato,
Ross, and Scherr*
Corbato: The war broke out in 1941 for the United States;
our high school went into long hours and I saw a chance to
get out in a hurry. 1 went to UCLA as a student with the
threat of the draft looming over me. Suddenly some people
came by who were concerned about the ability of the Navy
o maintain and repair the incredible amount of electronic
Jipment it was getting. There was a program called the

VI

’ 'fceibcrger provided his biographical notes during the Proiect
- interviews, which will appear in the next issue.

Eddy Program, and they gave me the opportunity to join the
program and get an education as an electronic technician.
One of the benefits, of course, was one did not get drafted
or get assigned to be a cook or something worse. So I
enlisted at the age of 17 in the Navy and went through a
year-long program as an electronic technician. I got exposed
to some of the earliest and largest electronic systems then
deployed in the Navy: mostly radars, lorans. and sonars. I

got [exposure] both on land and on ship, and it was an
incredible background experience. I did not realize until
later how important that was.

Lee: And how that experience paralleled that of other
people in some respects in radar and other analog applica-
tions? [Such as the wartime experiences of Maurice
Wilkes.33

]

Corbato: Yes, and it gave me a large-system perspective
which was very, very important, and I view that as seminal
in my own career. After the war I got a chance to go back
to college. I went to Caltech. Since everyone wanted to be
a physicist in those days, I wanted to be a physicist. Then I
came to do graduate work at MIT, and I was still a physicist.
I even got my doctorate in physics, but along the way I got
exposed to digital computers by the late Philip M. Morse
[later to be director of the MIT Computation Center]. He
recruited me to take on a new research assistantship in the
use of digital computers. That was approximately 1951. The
people who signed on with this initial ONR-sponsored re-
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search assistauiship program were exposed to punched

cards in the spring, and in the summer we were exposed to

Whirlwind. Whirlwind was just barely coming up: it had

about 1.000 words of 16-bit memory.

Rosin: ( ore memory by then?

Corbato: No. a very fancy, custom-built electrostatic mem-
ory that had a reliability [such that the] mean time between
errors on a good day was about 20 minutes.

Lee: Was that the William’s Tube?

Corhulo: No. Jay Forrester was very prescient in recognizing

that the William's Tubes were flaky in design, and he had

actually gone back basically to first principles to design a

very elaborate mosaic storage tube. Somewhat similar in

storage retention (charge retention), but it was a tour de

force in electronics to make it work — and they had to.

R»ss: They built them in the basement at MIT. Patrick

't out/ headed the group.''

Corhulo: They designed, built, and fabricated everything.

The engineering design was good: it was tough — they had
to rewrite everything every few hundred microseconds. I

think. The cycle time on the memory was 24 microseconds.

But it was a relatively fast computer for its day. and it had a

nice lean order code — a RISC machine without realizing

it.
|
Laughter.

|
There is no such thing as a non-RISC, right?

That’s right. It had a 5-bit field for instructions so there was

a maximum of 32 instructions.

I got lo know people like Doug Ross w'ho were also the

users of the day: I was a graduate student. I used the com-

puter in mv physics doctoral work and got full exposure to

using operating systems.

Rosin: Whirlwind, of course, was government sponsored

and had some really important work assigned to it. Was
there a lot of campus computing ("nondefense computing’’

in today’s vernacular) going on at that time? How many
graduate student colleagues were there who were using the

machine?

Corbato: Well, the people who ran it recognized the need to

have unclassified work and [be able] to use it in a free way.

So the deal they worked out was. to my recollection, approx-

imately three to four hours a day. once in the late afternoon

and once from 2 to 4 a.m. In the morning were the times

when the nonclassified people were allowed a crack at using

the machine. In fact. I did not really know very much about

what was going on at that spot in time. This meant one

worked all day and all evening preparing these Flexowriter

tapes that were the input [media). Then one took a quick

shot at the machine. And if you were really fast, you might

get two shots in [during] that two-hour period. But it was

perhaps one shot a day. Very frustrating, but on the other

hand, the machine was not that big: the programs were not

that huge yet. But the hours were all full.

Lee: But did you regard it as a personal computer?

Corbato: It was a personal computer; there were many
things about it that got lost in the next few years, such as

graphical display output and even audio output, in the sense

that there was a probe put on the circuit of the accumulator

which gave you a signature of every program you were

running. You actually could hear where your program was,

you could sense the loops, and you could even get the tempo
of how the program was running. Occasionally, people rec-

ognized from the audio that they had a program that was

misbehaving because it did not do what they thought it

should do at that point.

After I got my doctorate in physics, Phil Morse recruited

me into staying on with the newly formed Computation

Center that he had begun in 1 956. But the space and machine

did not really come together until the fall of 1957. For

approximately one year, those of us who were working on

the project with the new center were quartered in the Barta

Building where the old Whirlwind was. The focal point of

the new center was an IBM 704. Phil Morse had worked out

a package deal with IBM. where in return for the use of the

machine on campus for one shift, MIT would also make it

available to a cooperative group of New England colleges

for the second shift. Then the third shift would be retained

for use by their [IBM’s] own local scientific office, and the

fourth by a group in Cambridge which computed the orbits

for the first sputnik. That group was formed and directed by

Martin Greenberger.

To make a long story short. I played various roles ranging

from initially supervising a research assistantship program
to later becoming assistant director, associate director, and

finally deputy director of the Computation Center.

Rosin: I think this is an opportunity to have Douglas [T.]

Ross and Allan [L.] Scherr describe their backgrounds and
how they got to be users of this same system that Corby has

just been describing from his point of view as a service

center. Doug, do you want to kick it off? Where did you

come from and how did you get to the same point?

Ross: Actually. I did undergraduate work at Oberlin. We
have just finished having the 25th Anniversary Celebration

of Project MAC. and I was telling people that my honey-

moon night, the first night of my marriage, was spent in that

very same Boston Sheraton Hotel used for this conference.

[Laughter.] I came over to interview about coming here for

math graduate school [laughter] in the fall of 1951. 1 had a

better [financial] offer from Carnegie, but I decided MIT
was the better [technical] place to be.

I had a teaching assistantship on the way to a doctorate

in pure mathematics in the Math Department, and my wife

was the first "computer” hired at Lincoln Laboratory —
meaning the first female punching a desk calculator! We’re

very proud of her badge number (161). They worked out of

Building 20 and also used a mechanical correlation com-

puter designed by Norbert Weiner in the Servo Lab (Build-

ing 32). They were using it for analyzing radar noise. She
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had brought home a manual about it. and when the summer

i 952 came along I needed a summer job. I do not know

I siot the chutzpa. but I called up A I Sise. who was the

. -.ecutive director of the lab. I said. "Hey. if you’ve got an

electrical engineering student. I’m a math student, and by

the end of the summer we could give you a much better

calculator than that old ball-and-disk integrator thing!

Would you be interested in that?"” He got back in a couple

of days and said “Well,we can’t quite do that, but how would

vou like to punch a calculator like your wife does?” So I said.

• Fine, a summer job is a summer job.”

One of the first things I had to do was check out the

i.;ge results that they got with that analog computer

v sit-re they set the smallest separation between the two

tracing points. Two girls would each trace the data record

with a point, and the computer would compute one point on

the autocorrelation function. For a small shift, it kept corn-

ins out unexpectedly. The engineers did not understand why

it was so far off. I found out that there were a lot of other

correlators around, both mechanical and electronic, but all

of them were either broken or busy.

Somebody said. “Why don’t you check it out on Whirl-

, :.{j?” I said. “What’s that?" [Laughter.] I did not know it

. ,.d spun off from the same lab and was now up the street

in the Barta Building. Someone had told me that Jules

Charney in the Meteorology Department had had a corre-

lation program written by Jack Arnow (and I still have a

copy of that program ). That was the first program I ever saw

!

It was Jack’s program, and that same day I went downstairs

and got the programming manuals from Donna Neeb and

met John Frankovich (who just retired from Lincoln Lab

hi< year). Within a couple of weeks I was a programmer.

That’s all it took in those days.

Ross: Yeah, right! [Laughter.] Anyhow, the upshot of it was

that by the end of the summer I had completed an autocor-

relation program which I was trying to debug. At that point

Whirlwind was completely shut down for a couple of months

while they yanked out all of the input/output system and put

in a brand new one. in order to support the multiple displays

and push-button inputs and so forth for the pre-SAGE Cape

' id System.51

So I had time on my hands, and I started writing a Fourier

transform program in order to be able to complete the job

and actually get power density spectra out of the autocorre-

lations. By the end of the summer. I had two programs that

were partially debugged. I still had my two classes of Fresh-

man Calculus to teach, and I had a full schedule of graduate

school, but John Ward asked. “Do you really want to go

back teaching freshmen, or would you like to consider

making a career here?” I was the only mathematician in the

b Doing that son of thing I could continue my work, study

• ! special student, and get my degree — and everything

would be wonderful. I said. “Yes, I think it is a good idea.”

So that’s what I did. and by the time Whirlwind was back

up. I was hooked.

'

I think it's also appropriate that I give some thoughts

here in the context of time-sharing. As a matter of fact, my

memory is very faulty, so whenever I do these historical

undertakings, trying to document them, I only put in what I

can find in my own stuff. I’m not a scholar. I do not go to

look at other people’s stuff except my own copies of the

Comp Center reports and so forth, which are published. I

do not go digging around elsewhere. I do try to only say

“Within a couple of weeks I was a

programmer.”

“That’s all it took in those days.”

things that I can actually document. Usually I find I am off

by a couple of years. Things happened earlier than I thought,

and I’m surprised by the sequencing and so forth. It’s really

a fascinating, but time-consuming, chore to do this. Out of

this particular early sequence came things that do feed

directly into time-sharing.

Rosin: Before we get to time-sharing. Doug, I would be

interested in your reflections on the Comp Center as it

emerged at MIT: it sounded, from what you were saying

when Corby was talking, that you were a user, but when did

you get to the other side of the input tray?

Ross: I did not get to using the Comp Center yet. This was

well before the Comp Center existed. I’m still four years

before that.

The key thing was that the job I was doing concerned

very large scale data reductions for Air Force data. As soon

as I found out about the classified work that Lincoln Lab

was doing with Whirlwind. I managed to eventually get a

tour to see all the multiple scopes and so forth, and decided

that that was just what we needed to control our massive

data reduction programs. They were so big and so multifac-

eted that it was really hard to cram them through what had

gone from IK of memory (16-bit electrostatic memory) to

2K of magnetic memory. But they also had added a drum

which had six more 2K banks worth of stuff, so you really

had a lot of new things that we could use. Also, they doubled

the speed of the machine when core memory went in.

So we had these very large programs to run, and I

commissioned John Frankovich and Frank Helwig (who

were actually under Jack Porter, under Charlie Adams in

the Whirlwind programming group) to write what later

became called the Director Tape program — which is, I

claim, the first operating system! That came about because

the Flexowriter that was attached to Whirlwind had its

paper tape punch, paper tape reader and printer hooked up,

but when they installed a photoelectric tape reader, the

mechanical reader was left unused. We had a tremendous

shuffle of tapes to make our runs. So I had this idea that we

could put those same manual instructions on a tape in the

mechanical reader while we spliced together all our pro-

grams on one big reel for the much faster photoelectronic

reader — eliminate the manual operations and get more

reliability. So Frank and John built such a system called the
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Director Tape system, it was used also for controlling post-

mortems. dumping the machine state. So that was. in effect,

the lirst operating system, working along with the drum. I

also wrote a mistake diagnosis routine that swapped chunks
ofmemory to the drum and so forth, and that was part of the

system.

But then as the system grew, we started working on the

use of the manual intervention consoles, with push buttons

and analog displays. We switched from a 3D computational

programming emphasis to what is now called "interactive"

programming, hut l then called it "Gestalt programming."
with man-machine conversation being the thrust of it. We
had a couple of big demonstration meetings on it. But we
still were working just with the push buttons that went with

the Cape Cod control consoles that were in the secret Room
222 in the Barta [Building).

I did the first hand-drawn input to a computer (graphic

input) in 1954. That was one of the few programs I wrote
that worked the first time. I have a quotation of the opera-

tors in the main control room saying. “What kind of a

program do you have there? It sounded so strange." when
they looked up on the scope and saw my handwriting with

my name coming out.

We were under way early using all this stuff, but we
needed more language capability — ability to label displays

and label plots and so forth — to get some true language
control over what went beyond the push buttons. Starting in

February 195b. I started working with the Whirlwind engi-

neers to propose hooking the keyboard of a Flexowriter into

the console, so we could put alphanumerics into the program
on line. I 'mil then the keyboard had not been used, as near
as I can ligure out. Arnie Seigel was an engineer as well as

a programmer, and so he did a logic design, using relavs. We
had a Flexowriter on its own rolling table, and a plug. We
were not allowed to change any of the wiring on Whirlwind
because of the importance of the Cape Cod work, so we did

it without affecting anything in the electronics.

I believe that same physical keyboard input hardware, as

well as the design, was used bv Herb Teager and his group,

when they decided to put a Flexowriter on the [Computation
Center| IBM 704. In my Daily Resume book I mention the

meetings between Dean Arden. Jack Gilmore. John Mc-
Carthy. myself. Arnie Seigel. and whoever would be in

charge of the Lincoln [IBM) 709 programming (no name
given). sometime between December 29. 1957. and Januarv

1958 in order “To consider using the real-time package
(which was IBM's terminology) on the 709 to simulta-

neously service about 20 Flexowriters in TX-0 fashion. We
are going to start off with one Flexowriter on the 704 real-

time package." I say in the Resume that keyboard as well as

light-pen input was standard on the TX-0 all along. That was
the start of MIT's time-sharing development. That's the tie

that I thought would be appropriate to make here about how
the Computation Center time-sharing efforts got underway.

Lee: This [following) quotation is from the book A Century
o) Electrical Engineering and Computer Science at MEP1—
it talks about I960: “A proposal was worked out by John
McCarthy and Marvin Minsky: other advanced ideas were

proposed by Doug Ross. Jack Dennis, and Daniel Gold-
berg. And then it goes on to say. "the report mentioned
many students involved in the study, especially Allan
Scherr. That was one of the reasons I felt that it was so

important that we have a student of the era in this session to

say. "How 1 got involved in this project.”

Scherr: 1 came to MIT in the fall of 1958 as a freshman. I

came with a general interest in electrical engineering that

had started as a tinkerer with hi-fi systems, automobile
electrical systems, and so on. when I was a high school
student. In the second semester of my freshman year (this

would be the February 1959 semester) John McCarthy and
Nat Rochester, who was a visiting professor from IBM. put
a freshman course together called something like “Introduc-
tion to Automatic Computation." In fact. I can even remem-
ber the course number: it was 6.41. A bunch of people got
really excited about being in that course, so I signed up for

it and got accepted. Apparently there was a much larger

number ot people who had signed up than were accepted,

but I got in!

John and Nat wound up teaching us assembly language
starting with a pseudomachine that Nat had invented called

the "Rochester machine." Then later [they taught) FAP or
SAP. I forget wrhich. on the [IBM] 704. then Fortran I (or

II). and then John taught us Lisp. We ran class problems in

all those languages. I recall almost being bitten by the pro-
gramming bug. Most of the people in this course became
instantly addicted to writing programs. A couple of the
people Bunked out [of school) either that semester, or later,

because all they did was spend all their time writing com-
puter programs and did not go to [their] physics or math
classes. As it turned out. I came away with a fascination for

the hardware. So I did not do much with software for a while.

Dean Arden was my freshman advisor, so Dean figures in a

lot of this.

It was not until the following year (which would have
been 1960) that two rhings happened. One was that I met
Herb Teager who was looking for skilled [chuckle] under-
graduates to hire for a pittance to do computer work. I

needed the money, so I applied. In those days there were
two salary scales for undergraduates: if you were skilled you
got $3.40 and if you were unskilled you got $3.20. If you
knew how to program, that was considered skilled. Herb
hired me to do some work for him. One of the things was to

perform some of the measurements that were associated
with the study that was going on about future systems. I sat

at the console of the [IBM] 704 with a one-card self-loading

program that Herb wrote. After every job was run, I would
stop the machine and load this card in. and it would display

how many zeros were in main (core) storage on the console.

I d write that down, and by the end of the day we would have
all these numbers that would show how big the programs
were. [Laughter.] By subtracting the number of zeros and
taking the 7’s complement (or the 8's complement), you
could figure out how big the programs were. I produced a

histogram on how big the programs were, and that was one
of the things that went into the study.
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From the audience: There's one point of confusion which is

. that there were two long-range studies— Herb Teager

. .no chairman of one. Herb produced a large report4*

•„ ;nch got very little circulation— later we can get into what

the problem was— and I think that the data that Allan was

alluding to was gathered by Herb as reinforcement for his

large report. There was subsequently a short report which

was written by everyone but Herb, almost a rump report 1

that had many of the same conclusions, but also differed in

critical ways. That short report had almost no data to my

recollection.

.-bald: The data that Allan was referring to was part of a

.,rue body of data which was produced by the committee,

and it's sort of in the record but on the other hand it may

not be noticed.

Schern Interesting, because I was for the most part unaware

of the controversy that was going on...

Vudience: Hea\ \ politics.

.nerr: Well, as we go through the day. I'm sure it will come

out because there were some things that I wound up doing

which were political also, at least as I found out later.

Let me just say a few words about what it was like to use

the Comp Center in those days. As a student, basically what

you did was to write programs to do the usual kinds of things.

In fact. I remember one of the exercises in this course [6.41]

was to write a floating-point ADD in assembly language

tbout using floating add instructions. We were supposed

Use all the other instructions to simulate a floating-point

•JD. and that was probably the hardest of the homework

problems. I do not recall whether I ever got it to work, but

basically all the students would submit their [program]

decks, and they would be batched together and run under a

main program that the instructors provided. That program

would check to see whether you got the right answers and

produce score sheets for each of the students. You'd wind

up using 30 seconds of computer time for an entire home-
•'••rk assignment.

F:n actuaiiy not convinced that any operating systems

•i-ice then have been faster than the ones we used in those

days. The thought of assembling and running a program in

a few seconds still boggles my mind. In those days there were

peripheral machines that IBM provided that were basically

card-to-tape. tape-to-printer. and so on. that were run as

special-purpose machines. They were all in a glass house
with the [IBM] ”04. It was probably a year later— 1959 or

I960— that we got [IBM] 1401s. The [IBM] 1401s came in,

md there w&s a peripheral operation down in the basement
building 26 -hat I vividly remember going down to. It

really was a remote operation. The input/output station was
oasicallv phy sicailv remote from the computer by a floor, so
we would submit jobs down there and the output would
come back somewhere else. 1 do not remember where any-
more. The whoie idea w-as that programmers did not go into
the machine room.

Rosin: What was turnaround time on this?

Schern A day — if you got two shots a day, it was a good

day.

“I’m actually not convinced

that any operating systems

since then have been faster

than the ones we used

in those days.”

Rosin: Did you have to go back to find out whether your job

was run?

Schern Yeah, there would be people who would forecast

when you should come back. Usually you would ask the

operators. “How's turnaround time?” They would say,

“Well, it's pretty good today. Why don't you come back at

4 o’clock?" You would come back at 4 o’clock to see if you

had got it and they'd say. "Come back later.” Then you

would call up and say. "How is it going?" Mostly they didn't

know, so what I would do [would be to] go to my classes and

come back in the afternoon and see if it had come back, and

if it had I would say "Great!" and if it had not. I'd go home.

Writing programs in those days was a labor of love, and you

wound up spending a lot of time at your desk because you

did not want to waste the precious shot you were going to

get once a day.

Computing at MIT before CTSS

Corbato: There were quite a number of people who were

part of the initial new creation. One of them was John

McCarthy, who first came as a visitor (from Dartmouth) as

part of the New England Colleges Program and [who] then

decided to switch to MIT as a faculty member. Dean Arden

was on the faculty, and had been pan of the Whirlwind staff.

Then he became part of the Computation Center staff. Herb

Teager. who was a young assistant professor, was also part

of the staff.

In that environment. Phil Morse had tried to organize a

dual role for the Computation Center. It was first a center

of computer science research activities largely carried out

by the faculty, and it was also a service center for both the

MIT and New England college campuses. Part of the goal

in those days was to try to encourage people to use the [IBM]

704 in shrewd innovative ways. At First it was a little uphill.

We had to sell people on the idea ofhow to use the machines.

Fairly rapidly, as you would expect, we built up a good head

of steam, and people began to use the computer.

One of the first things that happened was that we began

to get caught with the congestion of too many people trying

to use the computer at one time. In the very early days,

people tried to use the machine as we did Whirlwind, where

you could go up to the machine with a deck of cards, read
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them in. and run your job. A few minutes later, probably,
you would lake a core dump (which had an incredible
number of octal digits) and then go back and try to sort out
what had happened. That was too inefficient for mass use
and gradually we. and almost everybody else in the country
using a machine of that character, switched to a mode which
got to be called batchprocessing, where the input decks were
collected in a group and prerecorded on a magnetic tape
using an auxiliary computer, so that the magnetic tape was
the input to the computer. It would run job after job. After
each job finished, it would take a core dump, putting each
out on magnetic tape, or when the [program] failed.'which
they usually did...

Schem ...At the exorbitant cost of 100 locations in lower
core, which everybody complained about.

Corbuto: The result was you had this kind of mail-order
business, where you could drop off your deck. The closest
to the computer you ever got was putting vour deck into a
tray! Someone would pick the contents of the tray up and
record them on tape. Then you would go and pick up your
output in a file bin and ponder what in the world had
happened. That style of operation persisted all the wav
through i%4 or 1965.

Rosin: Did you write your own primitive operating system
or did you pick one up per se? You have to remember that
IBM did not provide an operating system.

|
Here there was background discussion about whether that

statement was true!]

Corbuto: Let me see if I can give you my recollection ofwhat
happened. At first there was no operating system. Then
there was something called the Fortran Monitor System
(FMS). What happened was that just around the same time
that we were to get our first computer. Fortran made a big
splash. It had a major impact, of course. It opened the door
to people who were intimidated by machine language. It

enlarged the user base by a factor of 10 at least. One of the
by-products of that system was that the people who devel-
oped it organized a very simple-minded operating system
called the Fortran Monitor System (FMS). and I do not
know whether they, or whether we. inserted the assembler,
which was called FAP (Fortran Assembler Program), into
the same system. In that Fortran compiler implementation.
Fortran source was translated to assembler language and
assembled by FAP. SAP was the predecessor (Symbolic
Assembly Program). The original effective name was very
confusing. What was it assembling? It was assembling a
library routine at first, but in fact the result was this subset,
or successor. called FAP. specifically organized around link-
ing the Fortran program. That became our de facto machine
language.

Rosin: How many users did you have? How many times
could you run it in a day? What was turnaround time like?

Corbalo: The number of registered users probably was in
the several hundreds. Here I'm guessing, but we have the
old manuals and one could dig it out of the old progress
reports.

Lee: Let me read something to you. This is from John
McCarthy in Martin Greenberger's Computers and the
Wor/dof the Future'-3 [page 224]— so this is about 1 96 1 . John
says. "Since the Computation Center is overcrowded, delay
is more likely one or two days."

Corbato. Let me explain that. \\ e were using somewhere on
the order of three to five minutes for each job. So vou can
figure oul for yourself how manv jobs that amounts to per
day.

’ v

Lee: [McCarthy] says 125 to 160 a day.*

Corbato: We tried to use all kinds ofpressure and persuasion
(and just plain ordering) on people who had runs of longer
than an hour (an hour was a big run ) to run that kind of stuff
m the middle of the night and off-peak hours. But debugging
runs were [different] — occasionally people would bomb in
a minute and be in and out. but that was in the beginning.
By 1964 or 1965. things sped up a little bit. and you could
scale all those numbers down by a factor of 2 to 4. People
were running faster jobs, they were in and out faster, but
that s a detail. The critical problem was that the number of
people trying to use the machine was sufficiently large that
unless you had some pull or priority, which was verv reluc-
tantly given out...

Audience: I II say! [Chuckles.]

Corbalo: ...you were faced with a minimum of two to four
hours of waiting and fit was] much more likely to be an
eight-hour wait before you got a repeat run — even if you
were ready to turn the job back in instantaneously. Now
frequently what would happen is that vou would not be
sitting there waiting at the output bin. You would probably
show up two hours after your job ran. You would then
discover that you had to do some repair and/or analysis. It
would take you maybe two to four hours to do that, even if
it was pretty obvious. Finally, you would resubmit, and now
you suddenly got to the back end of a queue and you could
wait another four to six hours before it ran again and vou
got it back and saw the results. You can see how that could
easily escalate into 24 hours. In fact, that's what happened 1
and that s what was driving people crazy.

Rosin: (to Ross] Were you also a Comp Center user? f
Ross: Oh, yes— my group was. I myself never even learned
how to turn on a keypunch! During this time we were doing
the APT system, work which started in 1 956." Although we
started on Whirlwind, from the beginning the cooperative
industry APT project was targeted toward the IBM 704

* He probably meant per shift.
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series, because that's what all the airplane manufacturers

had. We were a very heavy user of the Comp Center right

i the very beginning, even using some of IBM’s time, on
_..usion.

Rosin: What was your view of Comp Center service capa-

bilities and so forth?

Ross: Well, we had two roles really. I had known Corby and

the others who were saddled with this responsibility. They
had all sorts of things to balance that had never been done
before. Also, they inherited the style [of programming] that

: -i built up around Whirlwind — of having an in-house

stem programmer group (nowadays we would call them a

jystem group). They were the center programmers, and
then there were the user programmers. There was a big

difference because priorities were given to the inside people
that the outside people could not get. So my group always

was in the crack between the privileged and the ordinary

users. We continued to push for more things because we
were so big. We had a big job to do, so we did manage to

wrangle deals. I did not get involved in that very much
: ccpt just to say. "Yeah, you pinched us too hard. We’ve

i *.o have some relief.” but normally we would be able to

get some runs on an express channel. But also we did our
best to stay out of the way and play the game the way that

they had to have it.

Rosin: By express channel you did not mean a physical

device?

[IBM System/360family:] Meanwhile, in about 1965, the
first OS/360 machine was installed. Those became the main
work force for batch processing.

So that was the chronology of it all.

Rosin: I have to interrupt Corby— I graduated from here

“The number of people trying to use

the machine was sufficiently

large that unless

you had some pull or priority...you

were faced with a minimum
of two to four hours of waiting.”

in 1957, and my first program here was on the [IBM] 650 in

what was, I think, then called the Computation Center?

Corbato: Frank Verzuh was one of the people who was
running a small service group beforehand, and he ran an
IBM 604 which was a vacuum tube. 50-step, hard-wired
program machine. He ran a punched-card shop; he ran a

CPC too. In the Lab for Nuclear Science, they ran an
LGP-30 series machine. There were all kinds of small ma-
chines floating around, including [IBM] 650s and later

[CDC] 1604s, all on the periphery of the center.

Ross: No, no. no. It was just that we occasionally got faster

.’.rnaround — a priority type of thing.

,-i.udience: An analogy is the grocery store. You had a quick
checkout counter.

Ross: Yeah. We would adjust what we were doing to try to

fit that [schedule]. I think we always were straining the

system— just with the magnitude of what we were doing.

Audience: Frank Verzuh was the first associate director.

Corbalo: MIT has always been a diverse place, in kind of an
anticipation of the minicomputer era. Many small centers

were successful because they had their own small machines.

So even though the central machine was the largest, it was
not unique.

Another key but minor point— the Whirlwind sped up
by a factor of 4, so it went from 24 microseconds to 6
microseconds when they put in the core memory.

Corbato: Maybe it's worth my interjecting for the moment
: 'c chronology of the machines, because the way it is coming
<ui sounds confusing, and we should get it more straightfor-
ward:

Whirlwind first came on-line around 1950. The non-Lin-
coln Lab use ran as a tool for the academic community.
While it was only limited in use, it ran until (according to my
recollections) about 1 958— maybe a little later was when it

actually had to be shut down.
The Computation Center began in 1957 before Whir

wind shut down. It started with an IBM 704. At some poir
v' as upgraded to an IBM 709— in 1959 or 1960.
The IBM 7090— which of course was the first transistoi

ized machine in that family. Then that subsequently becam
an IBM 7094 and that sequence of machines. That machin
family would run at the Comp Center until about 1973. whe
they were finally able to turn it off and get rid of it.

Ross: Yeah, but the throughput only went from 20,000 to

40,000 instructions. [Laughter.]

Corbato: My understanding was it really sped up. The other

thing that I picked up on was that Teager (I believe) built

all of his own hardware from scratch. He may have been
influenced by what had been done before, but he designed
all his typewriter controller stuff himself, and that was all

after McCarthy wrote a pivotal memo to Morse in 1959.
33

Lee: Let me quote from John McCarthy again.25 He’s talk-

ing about the turnaround time. He says, “This has a very bad
effect on student theses.” You [Scherr] were talking about
projects in the classes, but John is talking about theses.

“When an ambitious student proposes to undertake some-
thing substantial, his advisor often must say, ‘I do not believe

you can finish in time for a thesis.’” He continued, “I have
several students this semester who are in this kind of trou-

]
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hlc. I Ik-11 Ik- goes mi lo conclude [hat the solution is clearly
to have a private computer. Did these restrictions really
have an impact on the graduate proaram as well as the
undergraduate program?

Oirhald: It had an impact on everybody. In fact, it seems
«i> wit i tile rapid response by personal computers and

good t,mo-sharing systems, people just do not understand
low in it was. Its like trying to have a conversation
through the mail. You can't do it.

Seherr: I can give you an example. I took a course from
|V arvm Minsky on timftcial intelligence back in the 1960 or
I *>1 tune Irame. maybe I %:. We had to do a term project
and I proposed to write a program that would bid a brid-e
|hund|. So 1 was going lo take Gorin's book and turn it imo
a program. Or pan of it anyway — just the opening bids. I

asked lor and received an hour of computer time for the

Lee: For the whole project?

.Seherr: The w hole project.

Ii was worth a small fortune. Oh yes. it was worth several
hundred dollars. An hour of computer time in those davs
was considered a fairchunk and that was good for mnvbe it)
or -0 shots, and that was typical. People would' do a
bachelor s or master's thesis and get allocated four or five
hours. I lull s clocked time on the mainframe, from the time
j our batch job starts to when it ends. I do not know whetherUk\ accounted lor every second, but...

Kusin: They charged somebody lor ill
[
Laughter.

|

Lee:
I
h, C'orbatdl Were you actually charging people real

honesi-io-God" green money?

Corbuto. l *1al was one the interesting aspects. One of
the terms ol IBM's donation lor the use of the equipment
was that we were not to charge for it. It was free all rightWe nevertheless kept books and did the accounting to'trv
to introduce ft note of moral persuasion, so that we could
keep people Irorn abusing the amount of time they used and
Help them recognize how much of the resources 'they were
using. I he problem was that when we became overloaded
and we clearly should have been acquiring more machine
power, we had no money to do it. Nobodv was in the position
to pay lor anything. That did not ge, sorted out until about
19fib. when people began to [really) charge for machine
time. That created the cash flow to acquire machines.

Ross: In the meantime that's why my projects and Professor
John Mater s physics project under Michael Barnett, and I

forget who else, formed the Cooperative Computer Labo-
ratory at MIT. We had money. They tried to get me to take
over the whole [IBM] 709 and I said. "No. im not in the
computer business: I'm not going to run the computer " But
Slater and Barnett did. and that gave us much better turn-

around to do our large projects and also look considerable
pressure otf the regular Comp Center.

Rosin: That was done with sponsored research funds Iimagine.

wJwn '!li

L
r
me explain " here lha ' f'BMI 709 came from.

[VrmMB 7,!!? CCmer Was Pitching from theIBM] 709 to ,|,e (IBM) 7090 in 1962. Michael Barnett was

Physics n
'S “ a research ass°ciale for John Slater in thePhy .cs Department. He persuaded Slater that there was

“
?

,
;.

r

, ^
d,t|onal computation facilities where you couldcd a hills more li.gh-class service. So he convinced MIT in

tact, to underwrite the cost to install that machine.

Audience: Fourth floor. Building 10.

Corbuto: I forget exactly where. That machine ran in parallelwith the [IBM] 7090. I, may have been convenient for the
physicists, but it was also an economic bust.

c't
b

,

ea ‘ 0arsdves 100 much " i,h lhis - 1 "unted
to offer a slightly different point of view. I had been an
undergraduate a, MIT - 1 was a graduate student a, the
University ol Mtchtgan. I did my first vear ofgraduate workm psychology. From our point of view, as people interested
n computing and interested in doing other things involved
v th computers, we lelt there were never enough resources.

I thtnk we have to reflect on how much the advent of

nature of r '“'’T
°f academic research changing thenature ot research in universities.

For example, in psychology, not a mainstream science or
tsciplme at MIT but certainly so at manv other institutions

earn a' PhD h
7"' °' eVe " Smali comP u,ers a student could

uts AMo?ih
5

Ti
faCt0r anal-™s ™"S dcsk calcula-

te,' on a

S 31 t,eCanK a ,hrec - or ^°ur-minu,e

dol nsveh f
C0mpute;- and psychologists wen, back todoing psychology mstead of doing computation

So there were lots of changes going on at the same timeDemand was budding up not just because there was notenough computer time. but. as you say. Corbv. there were

They t^iteT*
7' llW 'voodwork wh0^ real work thatthey could do. changing their lives with computers. We weredoing a lot ot good things.

Corbato: Phil Morse was a pioneer at MIT in terms oftying to encourage, feed, and grow the useof computers for
search in other fields. The universities led the wav because

than Yh
ker 10 aCqi" re neW aPPlicati°"S for computers

' have notl" Th
ry genera '' a"d SO we became “‘rente

resources

™ ”ere ’ m°re demands “ran there were

That s why time-sharing sprang out of the university

hur i

°,
nm
p

em
7 Se We WerC the °"es who "ere really

hurtmg. People were trying to do more programming jobsand [fewer] production jobs, [with] more innovations Pro-gramming was the thing that was the hardest to do in a

spcct

“

n

f
es,ed env'ronment. It seems to me. in retro-P ct. that it was very obvious that time-sharing would be
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first recognized in the university. What was not obvious was
that industry would be slow in recognizing how important it

. 1 hat bnngs me to two questions regarding the intro-

s:-.;..iion of more generally available time-sharing at MIT.
One would be w ith respect to the Long Range Study Group,
and the other to outside influences. There has been an
allusion to Straehey's paper 4

’ and to things that McCarthy
was stimulating.- There must have been things going on in

the computing community in addition to what was going on
in Lincoln Labs. Is it worthwhile focusing on outside influ-

ences. or do you want to look at the Long Ran»e Study
• :ip?

On the technical side I think the study group not only
included the studies of MIT's own needs. We went around
and visited all the major manufacturers, or was that later for
the Multics project?

Corbato: Do you remember the date on the report?' I

thought 1961 maybe. I'll give you my own recollection of the
chronology. It's a little tricky. In some ways the ideas were

a ‘ r— [from] people who had used computers back in
' hirlwind cays when they had direct use of the machine.

*‘ad not had any intermediaries or operating systems
or all that. Whirlwind in a sense was the first personal
computer. That had not been forgotten by people. I think
that the person who deserves the most credit for having
focused on the vision of time-sharing is John McCarthy. I

do not know quite w hat led John, beyond the frustration of
the day. John McCarthy wrote a very important memo^
where he outlined the idea of trying to develop a time-shar-

4ystem.

• i:n was very prescient — he recognized hardware
us — and to my recollection, he had two key goals: [1JOne was to make it possible for people to have timelv

interaction with programs for the small computational
needs of actually debugging a program in contrast to run-
ning programs. He thought of time-sharing [as] acting
against the buffer of larger programs. [2] He also had a
desire for an individual to be able to use the largest machine
possible— for an individual who could not have afforded it

• nimself. So it was a chance to use a very large machine
problem which was justified by having a very large

- •nmunity of people using it at the same time. I do not know
ior sure whether he invented it, although I think he first
wrote down the vision of how to do it in a fairly precise way.
h was. in a sense, a .kind of an invention.

I have read Straehey's paper. Although he was given
credit for kind of coimagining some of the ideas, when you
read it carefully. Strachey had in mind the notion of debug-
ging between jobs or during jobs: it was a much more limited
' iew ol what we were trying to accomplish: He was trying to

:0P ''parallel debugging." Strachey was a modest fellow
— ;ie did not argue that he had the grand vision, but he

cv tainly was in novative and deserves some sort of cocredit.
at McCarthy discovered [the concept] (it s too bad John is

not here), and I believe McCarthy discovered Straehey's

work after he had done his work— recognized the similarity
and acknowledged it was a duality.

It was interesting [to note] that when Project MAC got
started a few years later, a number ot people came out of
the woodwork and said, “Oh. I invented time-sharing,” and
“Did you read my paper?” and this or that. The problem

“With the rapid response
by personal computers and good

time-sharing systems, people just do
not understand how bad it was.”

was that everyone had kind of dreamy visions of people
interacting with equipment. You can even trace it back to
Vannevar Bush.5 who had written a paper in the late forties.

The thing that John did was to spell out the particulars of
how you go about accomplishing the notion of having to be
able to interrupt, [and] the notion of having boundary reg-
isters. He really began to think it through. He was an evan-
gelist in part. He was a little cocky about how easy it was to
do and tried to get IBM to do things, and they kind of
humored us. We were having a hard time getting off the
ground because IBM was just humoring us. It was in that
environment that the Long Range Study Committee was
created.

Rosin: Let me interrupt because you've raised some inter-
esting points. Allan [Seherr]. you said you had McCarthy as
a freshman.

Rosin: I want to pick up on this idea of vision— what kind
of vision did he [McCarthy] give you folks as freshmen? Did
he talk about computer utilities?

Seherr A lot of the AI stuff was in there. He talked about
the chess-playing program project that they were working
on. It was almost like that course was a recruiting program
for people working on the chess problem.

Rosin: I guess I was just trying to find out if John himself
had something in mind and said. “Gee. this individual use
of large machines is necessary for chess programs,” for
example.

Corbato: John articulated that best in the Greenberger
book.*5 But there would be early memos. The early memo,
in particular, was arguing [that] we ought to try and do
something right now. The long-range study was set up in part
to shut John up! He was making enough of a row within the
administrative circles that they thought [that] we ought to

I

j

Schem No.

Rosin: Did he talk about large systems of interacting pro-
cesses and things like that? The AI visions?

Seherr Yes.
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Lee: If you had been doing the work in the 1950s era. you
would have done this whole thing in hardware and thought
about how to build another Whirlwind to do a job. When
did you move over to saying. "We can do this in software”?

Corbato: I think from the beginning it was recognized that
you needed a little hardware help to build the interrupt
programs — the ability to have clocks, the ability to set
boundary registries to prevent one program from straying
into another space. There were a few hardware things that
were vital.

Rosin: \ ou said John [McCarthy] saw that in the process
early.

Corbato: John was quick to spot the need for alt those things.
We got IBM’s help in part. They did a certain amount of
retroengineering on their old machines, but the older ma-
chines were miserably engineered, because from the point
°fview of meeting these requirements they had been sloppy.
If you used a certain sequence of undefined operations on
an IBM 704 or IBM 709. something would happen. It was
not what you wanted maybe, or maybe it was. Illegal oper-
ations were not trapped: individual users could give execu-
tive operations. It was nightmarish from the point of view of
trying to share the machine. So those things were hard to
rectify. It was recognized there wassome key hardware [that
would] help, not a lot. but key. It had to be available early
enough in the design [cycle] that people could get it in right.
Then the rest of it was reorganizing [the] software. It was
never in doubt, I think, that there was a software problem
to get organized. No one thought of it as just hardware.

Schem Let me ask a couple of questions. After I got to IBM,
I was asked a lot about how all this started. One of the
questions that came up, that 1 never quite got an answer to,
was about the relationship between CTSS and what was
going on at Dartmouth with the Basic system— which was
more or less the same time period — and JOSS at Rand.
Both systems were originated in the early sixties and were
time-sharing-like systems. Was there any influence from
those?

Corbato: I make reference to those [systems] in my 1962
paper on CTSS. 1

I did kind of a quick thumbnail survey of
contemporary systems of the time. My recollection is that
Dartmouth’s was influenced by our early activity at MIT.
They saw the idea of time-sharing, but they quickly latched
onto the idea of a special-purpose system and language —
that was the influence of [John] Kemenv. Now it’s possible
that there was some other path to that origin because [John]
McCarthy had been an assistant professor at Dartmouth. He
had been recruited by Kemeny to go there, and he was a
visitor to MIT from Dartmouth. He then finally switched
over [to MIT], but he obviously still had some ties [to
Dartmouth].

Rosin: You could imagine John visiting up in Hanover and
trying to spread the same gospel in a very different setting.

mmm

Greenbergen But I do not think John's thinking had gelled

x-: :•-!•; score yet— on time-sharing on interactive terminals.

In what year?

Greenbergen 1957.

Kosin: It was before John was here at MIT.

Greenbergen The JOSS system was developed at Rand by

Cliff Shaw as the hardware and software developer. His

•ion was largely to try to develop a system which was a

; n’cated calculator to support engineers and physicists.

,.:Ji like the Dartmouth system, he viewed the goal as

creating a computing environment that was wholly unto

itself, and it had a single language. So you put a lot of

attention into a language that was kind of a sophisticated

desk calculator. You could program in it. but it was alien to

everything else that you might be doing. Particularly, you

could not write a Fortran program because that just was not

a known language [to that system]. Now whether Shaw got
• - inspiration from hearing about the time-sharing ideas

• ere flying around. I do not know. I'm not sure where

.

.
got the idea. It started out from the notion of a special-

purpose system.

Rosin: Was Dartmouth something like this?

Scherr: Well, it was a simple system: [fundamentally] they

invented the Basic language and limited the usage to that.

That again was later [than CTSS].

•nberger: I guess my own recollection of the era was that

rybodv who began one of these multiple-access systems

.'.ad been influenced by John or at least had heard about him.

Ross: I've been really itching to fill in because I’ve just been
tracking [the discussion] here in my Resume. McCarthy and
Minsky came [to MIT] essentially at the same time in 1958.

From 1956. when we in the Servo Lab had success with

getting our first specially built console attached to the ERA
103 computer down at Eglin Air Force Base in Florida, our

• work concentrated on intimate man-machine working
.--••her. and preceded the sharing of the machine. And so

• •ere s a whole section about how, if we're going to move our
work from Whirlwind to the [IBM] 704. “we’ve got to have
this kind of equipment and it will be extremely desirable to

have the larger storage capacity and longer word length to
the [IBM] 704 for use in SLURP” (Servo Lab Utility Rou-
tine Program — our system in which we did all this experi-
mental programming). “The SHARE Assembly Program
' SAP) and the algebraic coding system being developed for

: :BM] 704 installation by the Comp Center personnel,
' they never did (it says here), will be more modern and

• tcxible than the Comprehensive System on Whirlwind and
so forth. so we really have got to have it. The possibility of
detailed research into automatic process control and mana-
gerial business decisions should provide ample justification
for the active consideration of these techniques as an inte-

gral part of the MIT Computation Center facility.” This was
in a memo from me to them.

Rosin: To whom? To the study group?

Ross: No. no. this was 1956! Way before. In fact, this was my

“We all quickly agreed that we wanted

a time-sharing computer all right,

but the question of how to go about

doing it was the part

that was not unanimous.”

first memorandum in the Computer Applications Group
series. “Servomechanisms Laboratory Requirements for

Computing Facilities. '56-’57.” So it was addressed to my
laboratory head over at the Comp Center. Our need to have

continuing man-machine problem-solving capabilities and
what that would mean to the Comp Center were ringing

bells on both sides. Here [referring to the Resume] I have

on November 1. 1956. ”F.J. Corbato called to inquire about

several of our people giving talks at the seminars and so

forth.” In January 1958. Peter Elias (then EE Department
head) suggested to John Ward that I should get together

with McCarthy. Minsky, and Dick Marcus (who is still here

at MIT. by the way) because they had just come into RLE
(Research Lab for Electronics). Here on January 30, 1958,

“I finally arranged to have lunch with McCarthy, which then

transferred to Minsky's home in mid-afternoon and we
talked some more until around 2:30 in the morning.” Sounds
typical. [Laughter.]

Anyway, that was the first real ding-a-ling between us

when they arrived on campus. It was right immediately after

that, in January 1959. that we had this meeting between

[Dean] Arden. [John T.. Jr.] Gilmore. McCarthy, Seigel,

myself, and whoever, to address the questions of using the

Lincoln Lab [IBM] 709 and the sharing of IBM’s real-time

package.

Corbato: But that would have come out of McCarthy’s

memo.

Rosin: I sense what you're saying, Corby, but I wonder if

you’ll agree that John, independent of where the ideas were
coming from...

Ross: He’s the one who put them in focus.

Greenbergen He was the catalyst.

Ross: Right here [in notes], “McCarthy is calling a series of

meetings to consider operator and compiler programs for

the [IBM] 709 which will be transferred to the [IBM] 7090

which will replace the [IBM] 704.”

/£££ Annals ofthe History of Computing. Vol. 14, No. 1, 1992 • 43



Time-Sharing at MIT

Rosin: He postered the administration to get this — which
resulted in the formation of the committee?

Corhato: I have finally put my finger on what the key issue
was. You d have to ask the JOSS people whether thev were
influenced by John. My guess is they were: they'd heard
about it. But what John was advocating was something that
was harder than what they were trying to do. He was advo-
cating a general-purpose system where you could program
in any language you wanted. That's where Dartmouth and
all of the others were taking out a slice of the problem but
not the whole thing. John was very dear on that. Later, when
we were trying to explain it to people, we would say we were
trying to create a system where you could write the system
in itself. That was not true of most of those interactive
calculator types.

Greenbergcr: In the late fifties and early sixties there were
many other thrusts in the direction of on-line multiaccess
systems, but they were not general purpose. The [AN/FSQ-
7] defense system was a multiaccess svstem. and so was the
airline reservation system (SABRE).’ which was started in
the same time Irame. But these were special-purpose sys-
tems built to perform specific functions.

Corhato: One of the arguments we had with IBM engineers
and executes was that they kept saying. "You do not need
time-sharing. We are already doing that: we have our airline
reservation systems." We tried to point out to them that that
was a transaction system and had nothing to do with gen-
era I -p u rp» )se programm i ng.

Rosin: > nu re about to answer a question that I wanted to
ask. Why was it called the "compatible time-sharing svs-
icm''? (Spoken in unison — laughter.) What was compati-
ble?

Corbato: In retrospect, it was a verv modest problem.
[Laughter.

|

Scherr: Well, it was important for us who were trving to write
programs.

Corhato: That actually is a good lead-in because it ties
together with Teager's activities. Teager was the one who
tried to start building a time-sharing system within the con-
text of the Computation Center. Phil Morse helped him get
funding, and he tried to get a group together — he had a
small group. Herb's problem was he was too good a hard-
ware engineer to want to take things off the shelf.

Greenbergen Even though he was advocating taking things
off the shelf!

Corbato: Yes. but he proceeded to sketch out a system
where he was going to do everything over. It was going to
be a total operating system. In this sense, he did nonhink of
it as general purpose, but you had to do it with his languages.
He was going to build the hardware for the terminafatta^h-

ment and the multiplexing of the terminals, and he was even
going to address the fact that some people are better at
writing than typing— he was going to allow input bv hand-
writing analysis.

Greenbergen He invented what became the Rand Tablet at
that period in time. Teager Tablet. He maveven have gotten
a patent out of it— did he?

Ross: No. as a matter of fact Rand has got it.

Corbato: Herb tended to be a little close to the vest in terms
ol the way he managed and operated, and he did not find it

easy to attract people to work with him. He had this grandi-
ose vision and maybe a half dozen people trying to work with
him. It looked like the timetable was going to stretch out a
long time before anything came out of the door. Further-
more. he had a fundamental flaw— namelv. that if vou were
going to use Herb s ultimate system, vou had to abandon
everything you had done before.

From The Development of CTSS to
Project MAC
Corbato: I started up with just a couple of the kev staff
people. Marjorie Daggett (who was then Margaret Merwin)
and Bob Daley. We hammered out a very primitive proto-

Rosin: W hy don t you give us a date, approximately?

Corbato: We started thinking about it in the spring of 1961.
I remember that by the summer of 1961 we were in the heat
of trying to work out the intricacies of the interrupts.

Rosin: What was going to be the user interface?

Corbato: We were going to borrow Teager's engineered
typewriter interface. We were going to have a few
Flexowriters initially as the keyboard input.

Rosin: This was on the [IBM) 7090?

Corbato: The [IBM) 709.

Lee: This was using Computation Center funding?

Corbato: It was all out of the same pot. sure— if vou mean
computer time.

Lee: No. no. I’m presuming you had some graduate students
and other people who needed some salary and other sup-
port.

Corbato: No. it was just two staff people. There was no
external funding.

Rosin: And the Long Range Study Committee report had
not yet been released, is that correct also?
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Corbato: That probably was true. I do not know the chro-

nology there. But we were acting on the vision we had
adv internalized. I sketched out what we would, try to

Marjorie. Daley, and I worked out the hairy details

: Tying to cope with this kind of poor hardware. By No-
\ ember 1961 we were able to demonstrate a really crude

prototype of the system. What we had done was [that] we
had wedged out 5K words of the user address space and
inserted a little operating system that was going to manage
the four typewriters. We did not have any disk storage, so

we took advantage of the fact that it was a large machine

and we had a lot of tape drives. We assigned one tape drive

typewriter.

• 'In: Weren't you sharing main memory with these peo-

ple. or were you rolling in and out their programs?

Corbato: We had to roll in/roll out programs.

Rosin: One at a time?

Corbato: On tape. We may possibly have used a drum for

• ome of that, but...

..enbergen There was no drum on the [IBM] 709. as I

recall.

Corbato: I think you're right. It was pretty miserable. We
were just trying to get a demonstration system going to

convince people that it was a good idea. A lot of people did

not understand what it meant to interact. It was amazing.
The fact is that this system could operate [effectively] as

Iona as nobody wanted an "all-the-core-memory” type job
:.;n under the Fortran ( FAP) monitor system. This system
'd coexist with that kind of an operating system and

.ould run jobs. So we could run compatibly, we could run
while ordinary work was being done on the [IBM] 709.

Greenbergen The feature that I thought ‘'compatible"
meant was that you could more or less take a program that
ran on the normal FMS system and run it under CTSS. It

meant [compatible] in both senses: it used the programming
•^tyle. and languages it was using.

Scherr: A year or so later when Project MAC started. I had
done an immense amount of programming to do some
simulation work, and they told me that from now on I’m to
get all my computer time on the time-sharing system. I said.
Oh. I m going to have to rewrite all this stuff.” Later I found

out I did not. because evervthine I had written would more
or less still run.

enbergen That was probably the primary meaning of
compatibility. It was not only compatible with running to-
gether with the old system, but it meant you did not have to
start over. So in fact we were able to get versions of Lisp
running on it.

Corbato: Let me just get in a few dates. Somewhere in

November 196 1 we were able to give a seminar and demon-
stration: that s the date that’s branded in my mind. It was
only a four-Flexowriter system because it had four [mag-
netic] tapes, and it would just barely demonstrate. But you
could have a live dialogue, and it would show that you could

“You’re about to answer a question

that I wanted to ask.

Why was it called the

‘compatible time-sharing system’?

What was compatible?”

get a typewriter to respond. There was a background stream
going on as well.

Rosin: This work was going on at the same time as people
were trying to use this overloaded Computation Center to

get their work done?

Corbato: Well, initially we would commandeer the machine
for periods of maybe a half hour to do a trial run of this

time-sharing system. Because of [the use of] batch process-

ing, we could get away with that. [Laughter.]

Ross: And because you were the in-house crew. [Laughter.]

Corbato: Oh. there's no question about it; we took advan-
tage of the fact that we had access.

Ross: This is the same time that I was feeling so squeezed,
and I was making deals with IBM to get time outside out of
their place. [Laughter.]

Corbato: We could not abuse it. so we had to be prudent as

to how much time we used. A lot of the time was on
weekends, which was when we managed to get the hardest

bugs out.

Rosin: So, then in November you ran a demonstration —
but you still were not providing service to anyone.

Corbato: Absolutely not. It was a demonstration. Then we
went through a long hiatus where we had to make some
fairly massive changes. I forget whether we had the memory
protection properly installed, but in any case it was not used

and we did not get it sorted out cleanly until we got the

[IBM] 7090. The [IBM] 7090 hardware arrived in the early

spring of 1962 and there was then a transitional period. The
reason I’m so sure of this is that I wrote the paper about it,

saying that we were running it on [IBM] 7090 hardware,

thinking surely we would have it running by the time I gave
the paper. [Laughter.] Well, it was an embarrassment, and
I still live with that embarrassment. The paper said we were
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running on the [IBM| 7090. but we in fact had not got it

running vet.*

Rosin: Was there any effect by your demonstrations at the

end of 1961 on the Long Range Study Group? The Long

Range Study Group report was in the process of emerging

at that time. There was the study group looking ahead into

what MIT should launch for the future. [While the future

-was right there in front of them!]

Corbato: People were pleased that there were finally exam-

ples surfacing from [the work]. They did not view it as an

answer to anybody's problem.

Rosin: They did not see what you were doing as the first

step?

( 'orhato: Absolutely not.

Ross: 1959, January 12 to 21: "McCarthy is calling a series

of meetings to consider operator compatible programs for

the [IBM] 7090 computer which will be a transistorized

version of the [IBM] 709. which will replace the [IBM] 704.

We had a meeting yesterday."** So the things were showing

tip in the Teager report, one or two years later.

( 'orhato: Let me explain what had happened. We did the

demo and we had some friends at IBM who worked very

hard to help make this be a more viable system — Loren

Bullock, in particular, who was the IBM liaison. Phil Morse

wax able to get ussome money from NSF beeause there were

three key upgrades we had to have besides switching to the

[IBM] 7090: getting the proper memory protection and

trapping the I/O instructions. Those were really critical

hardware helps, as was getting a real-time clock that could

interrupt. The first critical upgrade was a disk memory— 1

Inrget whether it was an IBM 1301 or 1302 — but it was a

big one for the day. And that got us away from this abso-

lutely ridiculous restriction that we improvised [assigning]

one tape unit per terminal. Secondly, the compromise we

had made by trying to steal 5K of memory from user pro-

gram space was intolerable. We got IBM to engineer a

second bank of memory so that we could put our supervisor

program in it. and at the same time prevent users from

writing over the supervisor easily.

The core memory was the second [critical upgrade]. A
second bank of core memory, and the third key modification

w-as that we needed something more extensive than a two-

vear-old home-built typewriter interface channel.

Ross: Was there a Comp Center [IBM] 7090 before the

[Project] MAC Center [IBM] 7090?

[IBM] 709. The switch to the [IBM] 7090 occurred in the

spring of 1962 at the Comp Center. These changes that I'm

discussing are with respect to the disk memory and the core

memory, and the [IBM] 7750 was the big typewriter inter-

face unit— physically gross, but it did the job logically.

Greenberger: And a lot more capable than what you were

supposed to use it for [laughter] — [it was] built to be a

massive switch, but in the end it was never used for that.

Corbatd: It was the only thing we could get our hands on

that could take 32 terminals at once. Today is much differ-

ent.

All those upgrades were in place by the spring of 1963.

Now this was coming together fast enough, and the schedule

was good enough, that when Bob Fano began to put to-

gether Project MAC. and his thinking began to gel during

the Thanksgiving of 1962. it was part of the planning of

Project MAC. It was possible to consider making CTSS a

platform for Project MAC. The plan was to get a duplicate

of the Computation Center [system] for Project MAC —
and that was ordered approximately at the turn of the year.

The intent was to use the system during the summer school,

which was in the summer of 1963. but of course IBM could

not deliver it quite so fast. So the [Project] MAC machine

did not show up actually until October [1963]. But we had

got the system up and functional in the spring of 1963 with

all of these changes I described, and we were able to use it

as the first platform in the summer of 1963.

Lee: I ran across several people who remember the MIT
summer 1963 event— the CTSS summer school. Were those

the first people from outside MIT who really got to use this

system? What was their reaction?

Corbatd: The intent of the summer session was to make a

splash. We were absolutely frustrated by the fact that we

could not get any of the vendors to see a market in this kind

of a machine. They were viewing it as just a special-purpose

gadget to amuse some academics. (They were humoring us.)

They did not see it as affecting the productivity of people in

trying to get things done. That was a major problem.

Schern I was at IBM during most of that period as a coop-

erative education student and later as an employee. That

was not the case. That may be your impression.

Corbatd: That was your impression. That was not the case

from my point of view.

Schern Why?

Corbatd: Let me spell it out. I know the chronology pretty

well. We made the [first] demo in November 1961 on an

“ Editor's note: A prime example of why historians cannot oven

always trust the primary sources of information on an event!

** From Ross's Resume.

Corbatd: In fact IBM. being a big organization, had every

thread of thought you could imagine, and we had some

people working within IBM who were rooting as hard as

they could and trying like heck to get the company to move

in our direction more. They succeeded in part, which is why
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we sot as far as we did. In fact, CTSS would not have been

possible without a lot of help from IBM.

.

.
f

r

; As a matter of fact, when I got to IBM after I left

Project MAC. I discovered that they had been doing a

time-sharing system in Mohansic, in New York, on the exact

same hardware that you had at Project MAC. It was called

TSM (Time-Sharing Monitor), and some guys basically built

it as a monitor. It had 30 to 40 users, and they were doing

verv much the same kind of stuff as was going on at Project

MAC.

• berger. It was not until much later that people started

. v. it seriously.

Corbato: Well, in fact, they did not take it seriously until we

ultimately joined forces with GE [General Electric Com-

pany]. GE was really not that sophisticated as a computer

company, but what the IBM people were afraid of was the

deep-pocket financial help that the GE Company could

give.

• .•• enhergen It uas also the fact that you were soon there-

joined by Bell Telephone Laboratories.

Corbato: And again we could argue the same thing.

Let me return to the impact of the summer study. We had

approximately a 16-active-ports-at-a-time type system. Al-

though in principle we could run a background stream, I

think that in those days to make the maximum use of

time-sharing, we did not have significant background work.

Ro-in: So how did you run the Comp Center in those days

, many hours of time-sharing, so many hours batch?

Corbato: In the Comp Center we had a background stream

and we worked against that. I [had] jumped ahead to the

time when we had our own machine. That was, in a sense, a

heavy compromise because basically we took advantage of

the fact that the batch processing people could not see the

impact of interactive users. We got away with it, so to speak.

The result was that of the several hundred people who

:
’ ^ived through during the summer, most of them were

r-.-isuaded — we did not pretend that we had a complete

system. We did have a general-purpose system. We would

write arbitrary programs, and since by that time we had

fairly rapidly sot a set of language choices, we were begin-

ning to show the potential to be able to use any language. I

do not remember when we got Lisp, but we certainly had

MAD.* We had a version of Fortran based on some of your

own work. Bob [Rosin].

People began to say, “Hey, this does seem to be like the

"• direction. "
I think we made a lot of converts, and

f -”P ;e for the tint time began to break out of this shell that

had unfortunately descended on the computer industry (or

* Michigan Aisor.:hm Decoder— a dialect of Algol 58— imple-

mented by Bruce W. Arden. Robert M. Graham, and Bernard A.
Galler.

the computer users)— namely, that the vendors knew best.

People began to really seriously think that the architecture

of machines might be different than it had been before.

Rosin: I’m curious about the effects inside the institute. You

said that you were getting away with a lot. I’ve got some

“We took advantage of the fact that

the batch processing

people could not see the impact of

interactive users.

We got away with it, so to speak.”

questions in the back of my mind. What was a significant

application of CTSS by someone who had no involvement,

no investment at all in the project? Were there people using

time-sharing during the day during the spring of 1963, while

you were getting ready for the summer session? Did people

actually get work done in that environment?

Corbato: I do not think we had [any of those] in the pre-sum-

mer session period. First of all, we did not have it debugged.

We were conscientious about not taking too much time from

the other job streams. And I do not think that we ramped

up enough so that there were any major applications that I

recall during that period.

Ross: We were running on the Cooperative Computer Lab

[IBM] 709 machine. I do not believe we got onto the [IBM]

7090 until it was the Project MAC [IBM] 7094 in October

1963, because I have the printout of the first successful run

of our AED compiler [on that machine], which was within

two weeks of when they brought the system up. That’s how

long it took us to sift our way through to get a successful

compilation on the Project MAC second machine. My im-

pression was that it was supporting internal beta tests more

than supporting [real] users.

Corbato: In one sense the Project MAC situation was one

extended demonstration— except that it was a self-partici-

pating demonstration, where users really got to get on the

machine themselves. Project MAC’S first use of CTSS was

during the summer session.

Rosin: You had a wild card naming system** for some files.

How was that dreamed up? The idea of an interactive editor

may have been obvious, but where did it come from? The

idea of logging on and logging off? A runoff capability?

Electronic mail?

Greenberger: Too many questions at once. [Laughter.]

Rosin: I’m trying to get the user’s view of this strange thing.

**The ability to use a generic indicator for a name, or part of a

name, usually denoted by *.
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CorbalorSure. wc knew all of those things were pretty much
cooked up hy ourselves, but I hesitate to say we invented
ihem — we tell all ol those ideas were kind of state of the
art. We were just picking ideas that were floating around and
which were kind of the obvious thing to do if you were trying
to put together a system. So the wild card idea — I find it

hard to believe we invented the wild card because it was kind
ol a natural — and I must say it’s a very ad hoc design. We
just sal down and said. "\\ ell. it would be reasonable to do.'*
and What would be nice?" and "How would you like to see
ihis organized? * — and that's the way we cooked it up.

(ireenherger: Some of the editing stuff came, as I recall.
Irom 1 X-0 in a program called the Expensive Tvpew riter.

Corbatb: So there were some
|
prior] prototypes of people

interacting with machines which I'm sure were in the back
ol our minds. On CTSS. the first editors were card image
editors. We did that for a reason. It was because we wanted
(he metaphor ol a card as a quick and easy communication
means, so we could explain to people quickly how [the
system] was used. Once we got rolling, card images were an
uninteresting artilacl. The next round of editors quickly got
rid of card images.

Rosin: That next round of editors — were those done by
students, by staff, of did they just pop up?

Corbatb: Well both. Jerry Saltzer. who was then a graduate
student, did typeset and runoff— a document preparation
system. He. in turn, borrowed ideas right and left from
pattern matching and string matching. He did a good engi-
neering job of pulling together all the things that'were kind
of recognized [as applicable]. In turn, as soon as people saw
bow successful (the system

|
was in doing basically what we

now call word processing, it was dear that preparing a
program was just yet another torm ol the word processing.
Unfortunately, because (MIT] is the sort of place where
people like to diddle and there are a lot of strong opinions,
wc soon had more editors than we knew what to'do with.

Rosin: ///compatibility! [Laughter.] Of course, your file sys-
tem provided compatibility. You still had a single format to
your file system.

Schern Well, hut the different editors had different internal
formats.

Corbatb: We made one early decision— in fact. I believe I

made it — to make the file system neutral to the contents.
So the file system did not understand w hat it was filing. It

was quite a deliberate strong boundary, and it meant that
any language could store material in any format it wanted.

Ross: Also, any command could be stored as a program in
any language, because they just had to have a common
boundary and a common start point. That came from ancient
Whirlwind. There was alw ays this standard of starting your

program at register 40 (octal), from which you would jump
to the actual program start. That technique was just carried
along with all this history, and so you had a general frame-
work into which you could put data or be” ready to run
programs, no matter where they came from — you just
worried about putting them on the disk.

Corbatb: That was quite deliberate. We wanted a simple-
minded system that was basically straightforward to use. and
the notion ot having a command library— w'ith arguments— seemed obvious.

Schern The file system is kind of interesting. What I wrote
[in my thesisj is that each track had 466 words, which appar-
ently was an IBM parameter. The [IBM] 1301 we started
with had nine million words on it. The files were stored with
each track being chained to the next, so that when the disk
was reorganized they put things pretty much in proximity,
so that it went very fast. As the day. or the week, wore on
and files were copied over, deleted, or created, the perfor-
mance ot the system would degrade as the distance between
the pieces ot the file got larger and larger. As a matter of
fact, when 1 was doing a performance model a couple of
years later, it turned out that the parameter measuring how
well the disk was organized was the single most influential
one in the simulation. It was almost a knob you could turn
to get everything to match in terms of performance.

Greenberger: That's interesting. Because that's, of course,
the same effect [found in] personal computers. [Laughter.]

Schern Exactly, the organization is very similar to what the
PCs do— it was a scheme that we tried verv hard to get away
fr°m when we went to the [IBM System] 360/370 systems.”

Lee: C an you identify a time when people began to think of
this as being a system for communication or a system for
word processing, as opposed to a system for getting [compu-
tational] work done? Or did that not happen untiF the Proj-
ect MAC era?

Corbatb: Word processing started very early. The Expen-
sive Typewriter example that was mentioned earlier was
clearly just that. It was obviously an immediate application
that people began to use for Saltzer s typeset and runoff.
They were aimed at exactly that.

Lee: When did word processing become communication—
e-mail?

Corbatb: The communication aspects were a little later—
one of the things that [Robert] Fano was responsible for. He
correctly saw that a time-sharing system was more than just
a set of people using a common resource: it was also a means
ol communicating and sharing ideas. We began to build [that
system]. I do not think that was in our initial versions of
CTSvS. as much as we began to put it in the later evolution
of it.
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Rosin: During the Project MAC years?

Corbatb: Yes. because we kept developing it [CTSS] for

•••-j! a year or so within the context of Project MAC.

Rosin:Mv recollection, in looking at the early CTSS manu-
als. was that it was unusual for a user to be able to refer to

some other user's files. [You were] logged in and you had

your user [space]. There was a system for a universal file

director)' or whatever it was called, and then an individual

user file directory. Was there a command in the early days

to he able to refer to a file that was done by. say, Doug?

•
''err: [There was] a public file area [that] you could copy
:;gs to and from.

Corbatb: That's right, we shared through a public file. In

fact, we came up with a quick solution which was to create

a public domain. That was the original thinking for libraries,

handy programs, and the like. And then, when we got into

the context of operating CTSS as part of Project MAC. we
continued to develop this [concept]. In fact, as we began to

ihink about our next time-sharing system, we decided to try

the ideas on CTSS. and so the second file system devel-

. for CTSS had the concept of linking.

Ross: Until then, that public area was the same thing as the
Compool was. in the programming context, from the old
SAGE days. In order to go from one user to another, you
put it in the common area...

Schern Looking at some of the statistics we took in those
days, the typeset runoff facility that Jerry Saltzer did was

1 on the average about once per logon. This data was
- toward ;ne end of 1964 during about a four-month

i".:sOd.* so it was after the system had matured a little bit.

Basically, what was going on was that typeset and runoff
accounted for about 1 percent of commands issued and
logon and logoff were about 1.5 percent.

Typeset was a mark-up language — when you used
typeset you put in a document mark-up language to do
things like centering, headings, etc.

•-•ivjn: What was that editor called?

• .rver.bergen There were two versions — eci and edm.

Scherr: ed would [constitute] 4.5 percent of the commands.
he edit, which was the card image editor, was 4 percent. So

'I was still being used after the shift that had already started
to occur toward this more free-form editor.

Rosin: Was there a mail command?

rr: No. there was no mail command.

Ross. But you could find out who was on the system!

i>cc excerpts :ron Scherr ‘s report in the next issue.

Corbatb: No. no. no. no. But we were working in that
direction, and there were a lot of the pre-Multics ideas
during the last versions of CTSS. We had the aspiration of
going in those directions, but it was a tough environment to
work in. As we began to wind down, we put our effort into
trying to put all the things we wished we had into Multics.

“A time-sharing system was more than

just a set of people using

a common resource; it was also a

means of communicating
and sharing ideas.”

Rosin: A little bit about the terminal equipment. Two kinds
of questions come to mind. (1) with respect to the kinds of
equipment used and how that evolved in the early days, and
(2) the first system for dial-up use of CTSS. during those
early days?

Corbalo: OK. good point.

The terminal system was very unsatisfactory. Everything
was ugly in one way or another. Flexowriters were noisy,
unreliable, and slow. The IBM equipment that we were able
to get them to adapt always seemed to be designed for some
other purpose. So even though they had Selectric typewriter
elements in them, we had trouble getting type balls that had
reasonable characters. We were also fighting another fight

at the time, which was to get people to admit that upper- and
lowercase were part of the computer vocabulary! We kept
insisting that we wanted both. That was tough. Most IBM
keypunches did not allow both, and Teletype did not allow
both.

Scherr: If IBM and AT&T did not allow them, they must
not be needed. [Laughter.]

Corbatb: That's right. Even in the early manuscripts. I think
there were a dozen terminals that we managed to test —
almost all of them [were] unsatisfactory. Even the Teletype
model 37 [which] was an upper- and lowercase unit (which
was later followed by the 33. which was a cheaper version)
was pretty clunky and noisy with slow response.

Rosin: Slow response, five characters per second? Ulti-

mately IBM came out with some pretty decent Selectric

units which were capable of being a good terminal.

Lee: The [IBM] 2741?

Ross: The [IBM] 1050 was a heck of a step up from the
Teletype. That was the big thing around Project MAC in

those days! Who is going to get a 1050?
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Rosin: What about off-site systems? I recall some early

anecdotes about people using CTSS from home.

Corhutb: The next thing we did was we got the late Carlton

Tucker to assign us some [telephone] lines, and we got

AT&T to cooperate in giving us modems.

Rosin: Lines on the MIT campus?

Corbato: On the campus PBX. People could have them in

their office, and they could dial up to CTSS. In fact, when
we got two CTSSs on campus, it was convenient because you
could then dial the one you needed or were trying to use at

the moment.

Rnss: Or the one that was not out. But before the dial-up

came. I used to tweak Corby and Fano while they were

setting all this stuff up with Tucker and deciding how to go
about it. I had my own Computer-Aided Design Project

money, so as soon as I realized that was going on. I moved

I
to CTSS]. I had not been able to program all the years we
were getting off the Whirlwind and onto IBM. I never

learned how to turnon a keypunch, and I had never touched

an IBM machine before. 1 did some T.Y-0 programming—
that's all. So I saw my chance to get back in and show my
programmers what I had been trying to get them to do. So I

just picked up the phone and called Teletype (which was a

separate division of AT&T) and said. ' Let's pul one in!"

I hey spent three months getting a line out to my home in

Lexington. It was a great huge box in the basement. Al-

though American television ignored it. when the MIT press

oil ice said this was the first one [in a home]. Canadian
Broadcasting Corporation [CBC] and British Broadcasting

Corporation |BBC| sent film crews [to my home] in the

spring of 1964 or 1965. So that was the first Teletype at a

home, connected to a computer. It was a direct line though:

I did not dial at all.

Rosin: Was it hardwired to the machine or hardwired to the

switchboard?

Ross: Hardwired all the wav to the computer. I had it there

for two to three years, and once it was up it never made an
error.

Corbato: I would say it had a couple of effects. It opened up
people's eyes to the fact that distance did not need to be a

factor. Of course, hard lines were feasible, but the dial-up

was [the next logical step], and that led some people to try

some real gutsy demos which came in from Europe and
[elsewhere]. They discovered [that] they had nightmares

with the telecommunications [in] trying to pull off demos
through all those foreign switchboards. It was really wild.

So there are all kinds of stories around that. There was a

fellow by the name of Joe Wegstein.* who used to work at

the Bureau of Standards. He was visiting one day. and I was
kind of showing off where we were. I walked up to a pool

* Joseph Wegstein. Chairman of the CODASYL Short Range
Committee. — staff member. National Bureau of Standards (now
NIST), see Annals. Vol. 7. No. 4.

room where we had a bunch of typewriters. I dialed up a

number, and I accidentally dialed the Project MAC ma-
chine. 1 meant to dial the one downstairs in the Computation
Center. It was not until the login masthead came up that I

realized the mistake and said. “Whoops. I made a mistake.
I m not dialed into the [Project] MAC we were just looking

at: I'm dialed into another one." He said. “Where is it?” I

said. "It's over there." 1 pointed across the street to the other
building and he looked at me somewhat incredulously— I

don't think he believed me. Nowadays that's taken for

granted, but in those days that was really [surprising].

Schern l remember being in the [Project] MAC room one
night. In those days whenever anybody logged on or off. the

[activity] was printed on the big line printer that was part of
the [IBM] 7090. Somebody from England had dialed in and
was clunking away at five characters per second with [Proj-

ect] MAC... I forget who it was.

Lee: Maurice Wilkes?

Schern It was Wilkes, as a matter of fact! We knew who it

was because it said “Wilkes" and somebody said. "Oh. that’s

the guy from England."

Rosin: What year was that?

Schern 1964 or 1965 or thereabouts.

Rosin: So things were really starting to happen after that

summer session?

Schern I was a graduate student in those days, and I had just

got my master's degree. 1 had spent a year as a teaching

assistant and most of my career learning how to do logic

design. I had decided that there was no future in trying to

get a PhD by building hardware, because it was so hard to

get tunding to build things. So I decided I'd do some pro-

gramming for my PhD work, and what I had chosen was
logic simulation. I had written some programs to do that. I

had been an IBM co-op since my sophomore year (which
was 1960). and by the summer of 1963 I was a summer
employee of IBM in the Cambridge Scientific Center, which
in those days was up by Harvard Square. I spent that summer
writing software to do logic simulation.

So now I came back to school in September of 1963 after

the summer session. Herb Teager was my thesis supervisor.

He said. “Everybody who's doing anything with computers
is in Project MAC. That's where the research money is, so

that's where we’re going." My reaction was. “OK. as long as

there is money and as long as I get computer time.” Also,

the question was. “Do I have to convert my programs
[again]?" I had completed almost all my course work for a

PhD. so the next job was to get my topic picked. The
committee I had was [Robert M.] Fano and Ron Howard,
who was the operations research guy. and Dave Liu.

Herb tried to talk me in to doing modeling oftime-sharing
systems — performance modeling. 1 alwavs thought that

what he really wanted me to show [was] how terribly ineffi-
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cient. slow, and unwieldy this whole thing was. I took some

measurements of reality to compare [with] the model. I

<• ':,;d. “What is being done on CTSS to measure its perfor-

:.;ce. its efficiency, its characteristics, etc.?" As it turned

. ml. there really was not any. Tom Hastings had done some

verv earlv. very good work. But that was about it. It was not

even close to what I thought was needed. Here I was,

probably early in 1964. more or less committed to a course

of research that required me to either discover measure-

ments wherever they were or make them myself.

Corbato: That's a very interesting... I'm glad you brought

- :-
,t up. There was a difference of viewpoint between

•Laser's thrust and ours, which in hindsight is easy to see.

Herb was trying to engineer it from the ground up. He
wanted to do it just right; he wanted to see the system

running efficiently: he wanted to see good user resources:

and, if he could not get it that way, he was willing to wait.

We were trying desperately to get a prototype going to

get people's attention. So Herb's project ultimately never

came off because it kept disappearing into the future, and

ours would shift in a very ad hoc fashion and [a] “let’s get

: re going" [way]. Clearly it became the thing that we built

aP°n.

Schern And it gave you something to measure. [Laughter.]

Corbato: We would try to [develop a] prototype because we

saw a major watershed in the way people looked at comput-

ers in terms of whether they could interact in real time or

not. So it was important to get a machine that did that —
whereas Herb was still focused on trying to justify [the fact]

'hat he was making good use of all the resources.

Rosin: There’s an interesting contrast between different

people’s views of reality in what you just said. You said

resources. You see, if what you're trying to do is optimize

technical resources (physical resources), Herb’s point of

view was exactly right. If you try to optimize the use of

human resources, then the point of view you were taking

was a lot closer to reality.

Lee: This ad hoc development— it sounds like it was almost

independent of the [study] committees!

Ross: As you debate the different views between Teager and

Corbato and Fano, I would like you to realize that you’re

hearing from two insiders with respect to us outsider groups.

The fact is that availability of a Project MAC [IBM] 7090

[using] CTSS. with all this eagerness to invite outside groups to

make it fly—make it useful and so forth— had quite an impact

on us.We were on the crack:we were neither inside nor outside,

but were not the proper kind ofoutside either, because we were

providing a service to other people. That was our mandate as

the Computer-Aided Design Project I always say, “You can’t

design an interface from just one side."

Corbato: In terms of what influenced us— it was basically

the thinking that got caught up in the small Long Range
Study report. That was clearly what was on my mind, and

I was the leader of the CTSS development. It reflected

completely an attempt to implement those ideas using

contemporary tools. I never claimed to be more than a

person who brought into development the ideas we had

been all talking about together. So I was trying to [de-

velop a] prototype, but I was not working on an indepen-

dent theme. My inspiration was the same inspiration as

the Long Range Study report.
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Research-oriented time-sharing systems
(Adapted with permission from the “Time-Sharing System Scorecard” prepared by Computer Research Corp. in fall 1967.)

Bell Telephone

Laboratories,
1

Munay Hill. NJ.

Bolt Beranek and

Newman. Inc..

Cambridge, Mass.

|

CSIRO. Canberra
I City. Australia

Status Type Computers) Languages

D (1/68) G GE 645*

Main Secondary No.
Storage Storage Use

256K DK (40M wds.) lOtT

DR(4M wds.)

Tape loop

(100M wds.)

24K (4K) DR (128K wds.) 64

, DR (2 units. 2SM
•
v?! wck.each)

MT (2 units)

32K (2K) DR (2 units, 5M 7
wds. each unit)

DK(12JMwds.)
MT (8)

Remarks . v v.;.--.;..-".

Highly interactive system

for research and
production computing.

Medical information and
communications system for

hospitals. Also used for

computational and data

management facility.

• Dartmouth College,

i Kiewil Computation

Center. Hanover.

Edinburgh Univ..

Dept, of Machine

Intelligence and

Perception.

Edinburgh. Scotland

!
General Electric.

• Research &

Schenectady.

Lawrence Radiation

I Laboratory. Univ. of

I California.

I Livermore. Calif.

Lincoln Laboratory

(MIT). Lexington.

Mass.

Lockheed Palo Alto
Research

Laboratories. Palo
Alto. Calif.

. DcpLof
hiciinul Eng

.

Cambridge. Mass.

National Bureau of
Standards.

Washington. DC.

Northern Electric

Co.. Ltd. Research
4 Development
Laboratories

Ottawa. Ontario.

Canada

Ohio State Univ

.

' ftimhtis. Ohio

Petkin Elmer Corn.,
Norwalk. Conn.

Partial G
0(7/67)

Complete
D (6/68)

GE 635 BASIC. .

.

Datanet-30 ALGOL-35,

(4) (1/68),

FORTRAN
(1/68)

Elliot 4120 POP-2

PDP-6 (2)
CDC7600
CDC 6600 (3)

CDC3600
IBM 7030
IBM 7094 (2)

TT-33 (55) 64K (24K) DR (768K wds.)

DK (2 units, 4M
wds.)

MT (6 units)

200 Datanet-30s have 16K core

memory each. Educational

and research use.

IT (20) 32K (16K) 8 POP-2 language suitable for

list processing and

numerical computation

using FORTRAN type

statements.

TT (45)

CRT (3)

16K (6K) DK (20M char.)

MT (6 units)

21 (TT)

3 (CRT)
Uses include scientific

programming, data

acquisition from

experiments, system

programming development

TT (200)

PLT(10)
256

K

4

wds.
DK (8x10* bits)

DC (32 x 10*

bits)

Photo-digital

store (1 x 10
IJ

bits)

Use is mostly scientific

computation.

TV (5)

CRT (4)

Rand Tablet

PDP-338
Remote
terminal

105K DR (20M wds.) 6 System features fast

response rime for on-line

graphical communication.

IBM 2741

(30)

128K DR(lMwds.)
DK (56M wds.)

20 Establishment of a large

computational facility for

scientific and engineering

research.

IBM 1050

(36)

IBM 2200

(6)

64K (20K) DK (6.45M char.) 42 System named RAX,
developed from earlier

360/40 system, used mostly

for engineering

IBM 2260

(4)

Sanders 720

64K bytes DK (2 units.

275M bytes

each)

DC (418M bytes)

MT (1 dual)

12 System named LACON1Q.
Information retrieval and
updating research.

IBM 2741

(5)

128K
bytes

DK (2) 10 System named ICES. Uses
include engineering,

science, management.

TY(5) 12K (8K) DR (88K wds.)
7

MT (6 units)'

5 Experimental time-sharing

system for student use in

thesis and research projects.

TT-33. 35 (4)

CRT
16K(6K) DK(1M wds.)

MT (4 units)

6 Uses include research in

the design of on-line

'

systems and terminals.

TT (70)

8130(4)

82K
6SK
(4K)

DK (12 units,

852M char,

each)

MT (10 units)

35 Scientific and business use.

IBM 2741

(20)

IBM 2260

. (8)

512K '.f
bytes

1024K
bytes

DR (1 unit)

DK (1 unit)

14

.
J&VGVU'i 'JC thl

J

TT-33, 35

IBM 2741

IBM 1050

32K v ,

16K
(22K)

DK (67M char.

1/68)

MT (4 units)

DR (4 units. 8M
char.)

16 Uses include lens design,

circuit analysis, scientific

engineering, and research.

(Table continued on thefollowing page)
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(“Research-oriented time-sharing systems” continued)

Organization Status Type Computer^) Languages Terminals Main Secondary No. of Remarks
Users

TT-3S (54) 64K (32K) DK(36Mwds.) 30 Project MAC is an MIT-2
research program

'

“S*JS
sponsored by the Advanced
Research Projects Agency '

(ARPA). DOD, undera -£*-

contract with the Office of5 r

Naval Research. .

Initial limited system '

—

.

operation by early 1968 \ -

with continued , *33
development thereafter.

System named PTSS.

Phase 1. MIT,
Cambridge, Mass.

IBM 1050

(56)

TLX (1)

CRT (2)

DR (.5M wds.)

MT (12 units)

Project MAC.
Phase 2, MIT,
Cambridge, Mass.

D (1/68) G TT-37
IBM 2741

ALGOUn

COBOL
FORTRAN IV.

pln

DK (40M wds.) 100

DR (4M wds.)

MT (8 units)

Purdue Univ.,

Computer Science

Dept.. Lafayette, Ind.

0(9/67) G IBM 7094 File

generation.

TEXT-90

(12/67).

FORTRAN

TT-33 (2) 32K (16K) DK(9Mwds.)
IBM 1052 MT (9 units)

Rand Corp.. Santa 0(11/65) G PDP-6
Monica. Calif.

DK (6M wds.)

DR (1M wds.)

Interpretive system with

.

compact conversational

language for small

numerical problems. *

An IBM 360/67 will be
operational in 1968. j

Stanford Univ.,

Stanford. Calif.

0(8/64) G PDP-1 Assembly
language

PhilcoCRT
TT-33. 35

DR (131K wds.)

DK
MT (2 units)

DR (5 units.

139K wds. each)

DK (1 unit, 4M
wch.)

u

MT (12 units)

DR (48K wds.)

MT (2 units)

System Development 0(1/64) G
Corp.. Santa Monica.

Calif.

AN/FSQ-32
PDP-1

65K (47K)
16K
buffer

TINT. IPL-TS.

JOVIAL. USP
Oriented to command andr
control experimentation j
and other general uses.

TRW Systems

Group. Redondo
Beach. Calif.

0(1/65) S Bunker-Ramo
340

Culler-Fried

system for

mathematical

Highly flexible system for j
on-line manipulation. ^
specification, and execution -

of mathematical and \

symbolic operations with

graphical display of results^
;

Jointly financed by UCLA .if*

and IBM . the system vVy
services UCLA and 88 ;,vy'

other California schools.

UCLA Western

Data Processing

Center. Los Angeles.

Calif.

United States

Military Academy.
West Point. N.Y.

Univ. of California.

0(11/64) G IBM 7740
u

IBM 7040/7094

0(12/65) G GE22S(3) CADETRAN14 1T(15)
Datanet-30

DK(18Mchar.) 15
MT (2 units)

0(1/66) G IBM 1410

IBM 1440

JOSSI*
Coursewriter

DK
MT (5 units)

Uses include

computer-assisted f'fri
instruction and the

1

V/I

admiiustraoon of student

enrollment. .

Instruction, administration;]

and research. ,

Univ. of California. D(l/68) G IBM 360/50

Irvine

IBM 2741 512K
(28) bytes

IBM 2260 (8K bytes)

(3)

TT-33 (8)
’ 48

K

TT-35 (8) (38K)
CRT (2)

,

Dataphone

(6)

DK (12 units.

7.25M bytes

each)

MT (4 units)

DR (1.3M wds.)

MT (2 units)

DK (144M wds.)

Features hardware address

'

mapping. The SDS 940 . .

>*

system is based on the '
• /

results of this

ARPA-sponsored project, .v.'

Extension of the

Culler-Fried system now'?»
operating on the RW400tsE
The 360/50 system has . Tl
simultaneous background,.^

processing.

Experimental time -sh aring:

system for general -j _

f

university research.

Uses mdude education inc*^;

varied research program*!*/
diverse fields. -

Univ. of California.

Project GENIE.
Berkeley. Calif.

0(4/65) G SDS 930 FORTRAN II.

ALCOU LISP.

SNOBOU
CAU DDT.
QED.ARPAS.
QSPL

D(l/67) G IBM 360/50 Culler-Fried

system,

FORTRAN IV

Univ. of California,

Santa Barbara
20 consoles

14 64K
Rand tablet

IBM 1050

(3)

4 DK (1.8M wds.) 16

DR (1M wds.)

Core (.5M wds.)

Univ. of Illinois,

Urbana
TT-33. 35 (8) 8K(6K) DK(10Mwds.) 7
CRT DR (64K wds.)

Univ. of 0(9/67) G CDC3600 BASIC TT-33. 35 32K(8K) DR (2 units. 2M 32
1

Massachusetts. PDP-8/680 SNOBOU char, each)
Amherst COCO. DK (2 units. 8M

SMALU char, each)

FORTRAN IV MT (4 units)

Univ. of 0(6/65) G IBM70W FORTRAN. TT-35 (4) 32K(24K) DK 6
Pennsylvania. PDP-8 MULTI-LANO. BR(2) MT (6 units)
Philadelphia map,

ALCOU USP.
SNOBOL

Univ. of Pittsburgh. 0(3/66) G IBM 360/50 ALCOU PIU
5 IBM 1050 128K DK (2 units. 24

Computer Center. FORTRAN rv. (3) bytes 7.5M bytes)
Pittsburgh. Pa. PL/l(l/68), IBM 2741 1M bytes

Assembler (20) LCS
(32K
bytes)

Univ. of Utah. Salt D (12/67) G Univac 1108 fortran V. TT-35 (20) 131K DR (6 units. 20
Lake City TRAC (65K) l-5Mwds.)

COBOU MT (8 units)

ALGOL FastRand II
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’ 'otes

1. Development in cooperation with Project

MAC. MIT.

2. Multiple-processor time-sharing system.

3. Developed with the Massachusetts General

Hospital under contract from the National

Institutes of Health.

4. Based on an earlier five-station PDP-1 sys-

tem operational 9/62.

5. Based on the Rand JOSS language.

rhe 256K core storage applies only to the

PDP-6s.

7. To be replaced by a larger model early in

1968.

8. Units have been installed but are not oper-

ational.

9. Initially time-shared in 1961 at the MIT
Computation Center.

10. Other languages include FAP. SUP. COGO.
SNOBOU STRESS. GPSS, COMTT. OPL-I. and
OPS-3.

11. Most Project MAC Phase 1 languages will

be implemented later.

13. Additional unit available in January 1968.

14. Each console consists oftwo keyboards and
a storage tube display. ..

15. System currently utilizes five computers in
;

addition to the control IBM 7740.

16. CADETRAN is an extended teaching dialect

of FORTRAN.

17. 64 with added communications ports.

Characteristics listed in charts

Status

O Operational system; number in parentheses is the approximate date that the system went on the air.
D System under development; anticipated date that operations will begin.

G General purpose

S Special purpose

Computer

Manufacturer’s name and number of central computers in system.

Languages

Basic languages available on the system at present.

Terminals

Type of terminal equipment available; number of such terminals in parentheses.
TT Teletype; number following denotes terminals and model number.
TY Typewriter

TLX Telex console

CRT Cathode-ray tube display

BR Bunker-Ramo Series 200 display consoles
IBM IBM 1050, 2741 keyboard consoles; IBM 2250, 2260
Philco Philco display consoles
PLT Plotter

Main Storage

First number denotes total core storage in words on the system; second number in parentheses, if given, i

maximum core storage available to an individual user.

Secondary Storage

DR Magnetic drum
DK Disk file

DC Data cell

MT Magnetic tape
Core Bulk core
CF Random-access card file (K = 1024, M = 1,000,000 words per unit).

No. of Users V *

.

Maximum numbers of users who can operate simultaneously at any given time.
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Commercial time-sharing systems

Users could purchase remote, on-line, and interactive computer servicesfrom the organizations listed below. (Adapted w

permission from the 'Time-Sharing System Scorecard"prepared by Computer Research Corp. in fall 1967.)

Organization Computer Conversational

Languages

Terminals Number of

Users*

Minimum
Charge per

Month

Average

Charge per

Terminal

Hour

Charge per

Minute of

CPU Time

Disk h
Storage per ?|
Customerf t—

Allen-Babcock

Computing. Inc.. Palo

Alto. Calif.

IBM 360150' PUl (on-line subset) IBM 2741

TT-33. 35. 37

Friden7100

IBM 1050

90 S385.00 None 35-310
2

Applied Logic Corp..

Princeton. NJ.
DEC PDP-6,

PDP-10
(12/67)

1

FORTRAN IV. DDT.

JOSS. MACRO- 10.

Compact COBOL.
USP.SNOBOL-6

TT-33. 35

CRT
30* N0” $5.00 $6.00

Bolt Beranek and

Newman. Inc..

Cambridge. Mass’

PDP-7/8 TELCOMP TT-33 None $12.50 None

CEIR. Inc.. Arlington.

Va.

GE235
Datanet-30

BASIC.ALGOL TT-33. 35 40 S250.00 $6.00 No,. I20K i :

Computer Sharing. Inc..

Bala Cvnwyd. Pa.

SDS 940 CAL. ARPAS. BASIC
DDT. FORTRAN IV.

FORTRAN II

TT-33. 35 32 None $30’ None 60K*

•’ fC ’»

Corn-Share. Inc.. Ann
Arbor, Mich.

SDS940 BASICCAL
FORTRAN IV.

SNOBOU TAP. DDT.

FORTRAN II

TT-33. 35 64 $100.00 $10-320 $2.50 0»

Dial-Data. Inc.. Newton.

Mass.

SDS 940 CAL. DDT. OED.
FORTRAN II.

BASIC ALGOL
FORTRAN IV.

SNOBOL ARPAS

TT-33. 35 32 S 100.00 $13.50 $3.00 60K+ . ' L ’ 2

|
General Electric Co..

Information Service

Dept.. Bethcsda. Md.’

GE 235

Datanct-30

BASIC ALGOL
FORTRAN

TT-33. 35

PLT
40 $100.00 $10.00 $2.40 - -M

m
International Business

Machines. New York.

N.Y.’

IBM 7044 QUICKTRAN IBM 1050

IBM 2741

80 $125.00 $12J0
,# "

;. i
/-'

Intinco Limited. London.

England

Keydata Corp. (Adams
Assoc.). Cambridge.

Mass.

Univac 418 (2)

Univac491

Stockbrokers’

Language

KOP III

TT-33 (60)

TT-28

60

200
- -

'H
Pillsbury Occidental

Co..
1’ Raleigh. N.C.

GE 265 ALGOL BASIC
FORTRAN

TT-33. 35

PLT. CRT
40 $108JO $10.00 $3.00 o* .-~tJ

Realtime Systems. Inc.,

New York.N.Y.

B-5500 FORTRAN IV.

COBOL ALGOL
IT. TLX.
TWX.CRT

15 $500.00 $15.00 $8.35
°*

^§1
Tymshare.Inc-.Los

Altos. Calif.

SDS 940 CAL BASIC OED.
DDT. FORTRAN IV.

ARPAS.ALGOL

TT-33. 35

PLT
60 $80.00 or

$390.00

$13-316 None ftOK*

VIP Systems Corp..

Washington. D.C.

IBM 1440 IBM Administrative

Terminal System

IBM 2741 40 ,
$375.00 $7JO None iook^M

• In all cases, the number of simultaneous users can be increased by the addition of equipment or by duplicating the computer system,

t Number denotes amount allocated in characters or bytes: indicates more available at extra charge.

-11

1. Special operation codes for efficient conver-

sational interaction added.

2. Dependent on amount of core used.

3. This new system will be in operation early

in 1968.

4. Will be increased to 40 in late January.

5. Systems located in Cambridge. Mass.; East

Orange, N.J.: and London, England.

6. Cambridge and East Orange handle 32;

London handles 16.

7. For the first 20 hours; $25 per hour thereaf-

8. Service available from offices located in 33

major metropolitan areas.

9. Other systems in Chicago. Cleveland, Phil-

adelphia, Los Angeles, and Toronto.

10. For the first five hours; $11 for hours,

through 75, $9 per hour thereafter, i

11. A charge of approximately $5,000 pef.yi

plus a usage charge of $.05 per inquiry!

12. For accounting and management.-' as

Charges on the basis of message transit

sions. processor time, and storage usecfc.

13. Trade name Call-A-Computer.
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The emphasis differed in each case. CTSS was oriented

toward a general-purpose service offered by a central com-

pl ,
t

:na service. The MIT PDP-1 system was organized to

.vw each user direct control of I/O devices in native ma-

ci-ine languages, but with protection from other users, so

that each user was presented with a virtual machine capable

of running arbitrary programs. The BBN PDP-1 system was

oriented toward an environment for interactive program

development which included the use of a high-performance

graphical display. The Dartmouth system focused on intro-

ducing computing to nonprofessionals with the constrained

but easy-to-leam BASIC language; the JOSS system fo-

cused on a carefully human engineered computational pro-

: . -ming interface; and the developers of the AN/FSQ-32

svsicm were interested in similar objectives to those of

CTSS, but in the context of developing and maintaining

large programs for military applications.

These time-sharingsystems, while among the earliest and

more significant, were not the only ones developed in the

1960s. Rather they display some of the variety of objectives

and directions taken. With hardware obsolescence, none of

the systems has survived, except for the BASIC system,

which, with changes of hardware, continues to evolve as the

• computing facility of Dartmouth College. Neverthe-

L.--. me early systems have had direct influence on almost

all the current time-sharing systems in use, frequently by the

students of one system becoming the designers and im-

plementers of the next.

By the mid-1960s, time-sharing systems, and especially

those ofMIT’s ProjectMAC and of Dartmouth College, had

attracted considerable attention among computer users,

managers, and manufacturers. The obvious impact of time-

sharing systems forced these different groups to reevaluate

their roles and the desired modes of computer use. More-

over, development of extensive new time-sharing systems

had begun. Among the more notable plans were those for

the Multics system (by MIT’s Project MAC, the Bell Tele-

phone Laboratories, and the General Electric Company)

and the TSS system (by IBM for the IBM 360/67), which

were especially comprehensive in their goals. Indeed, this

very comprehensiveness led to underestimations of the scale

of the software engineering required. The Multics system,

eventually marketed by Honeywell (which had acquired the

GE Computer Department), took several years longer to

develop than initially anticipated. The TSS system, imple-

mented by a much larger group, was not as delayed as

Multics, but had disappointing performance and human

interfaces when first delivered. Despite these warning signs

of engineering complexity, by the end of the decade, dozens

of time-sharing system implementations were being devel-

oped both by ambitious users and by major manufacturers,

and time-sharing was well recognized as a significant mode

of computer interaction.

The series of “Time-Sharing System Scorecards” pub-

lished from 1965 to 1967 by the Computer Research

Corp. chronicles the development of time-sharing systems

in research organizations (universities and laboratories) and

the expectations for commercial offerings. The last of these

scorecards (reproduced here) shows a stage of development

when time-sharing was still new enough to be a research

effort and not quite mature enough to be commonplace.
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A Note on the Multics Command Language

A. W. COLIJN
Department of Computer Science, The University of Calgary, Calgary, Alberta, Canada T2N 1N4
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Hanoi

The Multics operating system, 1 ' 2
currently available on a series of Honeywell

machines, was developed starting in 1964 as a joint effort involving Project MAC of
M.I.T., Bell Telephone Laboratories, and the computer department of General
Electric Company, later taken over by Honeywell Information Systems, Inc. This^ operating system is very nicely structured, and it is intended for, and very well designed
for interactive use. The command language, therefore, is also designed to make
interactive use of the computer convenient. This is achieved through a combination of
features, including the availability of powerful commands, the availability of standard
and user-defined abbreviations, the availability of on-line documentation, and the great
consistency in the use of arguments to the commands.

In addition to containing a number of powerful commands for interactive use and
immediate execution, the Multics command language is also a reasonably complete
programming language, since there is provision in IVlultics for defining files, called
segments in Multics, containing commands; these commands are executed when such a
segment is invoked by giving its name as the first argument to the exec^com processor.
These so-called exec_com segments may have parameters, which are passed by value,
and they may be called recursively. An extensive set of so-called active functions is
provided in the operating system; these active functions allow certain operations,
including arithmetic ones, to be performed, and they permit access to many system
values and parameters ranging from the time of day and the electronic mail system to
such things as the search rules for locating segments in the hierarchical file directory

Commands in exec^com segments fall into two categories: the regular Multics
commands, and commands which can occur only in exec_com segments. The latter,
which are distinguished by being preceded by an ampersand, include the Scprin’t
command, and the Sdf command, which permits conditional excecution of commands
but which, regrettably, may not be nested.

m the exec~com facihty is the fact that there are no facilities for declaring
ocal variables, and even the facilities for declaring and using non-local variables are
convenient, and very poorly documented. For example, since it is apparentlyumed that most exec^com processing will be concerned with strings, if the value
igne to a variable by means of the value$set command is an arithmetic expression,command assigns to the variable the string representing the expression (which may

•
later Using the active function value, rather than the value of the^pression.
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In spite of its weaknesses as a programming language, the command language,

together with the execucom processor, is a powerful programming facility. Of course,

the validity of this claim may be proven or illustrated in a number of ways. Following an

earlier paper,
3 we use two examples as illstrations: the Towers of Hanoi problem and

Ackermann’s function. ...
The well-known Towers of Hanoi problem 3 has an elegant recursive solution, as

follows. In order to move n discs from stack 1 to stack 3, say, begin by moving the top

n - 1 discs from stack 1 to stack 2, according to the rules, and provided that n> 1 . Then

move the remaining, largest disc from stack 1 to stack 3, and finish up by moving the

n-\ discs from stack 2 to stack 3, again according to the rules, and again provided that

n>
The solution using the exec-com facility of Multics, shown in Figure 1, follows the

above recursive solution directly. The segment named Hanoi. ec (where the suffix .ec

& This is the segment Hanoi.ec; it has four arguments

& representing the number of discs and the source,

& intermediate and destination stacks. Example:

fif ec Hanoi 4 “s” “i” “d”

&
&command-line off

&if [greater & 1 1] &then ec Hanoi (minus &1 1] &2 &4 &3
&print move disc &1 from &2 to &4
&if [greater &1 1] &then ec Hanoi [minus & 1 1] &3 &2 &4

Figure 1. Multics exec-com segment for the Towers of Hanoi problem

indicates the type of the file to the operating system) contains the necessary commands,

with the first one,

SccommandAine off

being used only to suppress the automatic printing of Multics commands as they are

being executed. It is worth noting that references to formal parameters are made by

their positions—thus &1, &2, &3 and &4 denote the four formal parameters—and that

ec is (an admissible abbreviation of) the Multics command to execute an exec-com

segment. Hence the parts of the last and third-last lines of Figure 1 which read

ec Hanoi [minus &1 1] ...

are recursive calls of the execucom segment Hanoi, with the first argument, the number

of discs, reduced by 1 . The Sprint statement causes the string which follows on the

same line to be printed, but only after parameter substitution has taken place.

Ackermann’s function
3 ’ 6 ' 7

is a doubly recursive function which may be defined by

' 71+ 1 if 771 = 0

A(m,n) = A(m-l,t) if m > 0, tz = 0

A(m-l,A(m,n-l)) if m>0,n>0

A Multics command language program for Ackermann’s function cannot follow the

definition directly, since exec-com segments cannot be used as functions, and they

cannot, therefore, be used as arguments to exec-com segments or to active functions. A

Multics command language program to compute Ackermann’s function, consisting o
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four exec-£om segments, is shown in Figure 2. The segment Ackermann.ec plays a co-

ordinating role. It creates a segment, here called zvhocares, in which the value$set

command may allocate variables; in this case only one variable, A, is used. It then

invokes the segment pi .ec which starts the actual computation. Upon return from pi

the value A of Ackermann’s function is printed using the value$dump command. The
segment p0.ee is used to circumvent the problem, mentioned above, that all

assignments using value$set are string assignments: since arguments are passed by
value, the value of the argument &1 is assigned to A.

This is the segment Ackermann.ec

;

& it has two non-negative integer

& arguments. Example of use:

& ec Ackermann 2 3
&

. &command-line off

value$setseg whocares

ec pi &1 &2
value$dump A
&command-line on

& This is the segment p0.ee; it has

& one argument and is used to make
& assignments to the variable A.
&
&command-line off

valueSset A &1

& This is the segment pi .ec; it has

& two arguments
, it distinguishes

& between the cases of Ackermann’

s

& function, and it deals with the

& simpler cases.

'

&command-line off

&if [nequal &1 0] &then ec pO [plus &2 1]

&if[nequal & 1 0} & then &quit
& if [ngreater &2 0]

&then ec p2 &1 [minus &2 1]

&else ec pi [minus & 1 1] 1

S’ This is the segment p2.ee; it has

& two arguments and it deals with the

& case m> 0, n>0.
&
&command-line off

ec pi &1 &2
ec pi [minus & 1 1] [value A]

Figure 2. Multics exec-com segments for Ackermann’s function

The segmentpl.ee separates the three cases and deals with the simpler ones. Thus

Am
rSt tW°^ statements deal with the first line of the definition of the function, i.e.

(0,n) = m+ 1, after which the 8cquit statement effects a return. Note in passing that
statements are used because of the absence of a compound statement facility,

311 t atthe active function names nequal and ngreater stand for ‘numerically equal’ and
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‘numerically greater than’ respectively. The final three lines of the segment distinguish

between the remaining cases, dealing with the more complicated one with a call to p2.ec,

and with the simpler one through a recursive call to p\.ec. Finally, since execucom

segments cannot be used as functions, the segment pl.ec deals with the most

complicated case in two steps: It first computes A(m, n — 1 ) by a call to pi .ec, and then it

uses the computed value in another call to pl.ec to obtain the final result.

It remains to be observed that although few people would use the execucom facility for

computing Ackermann’s function, or solving the Towers of Hanoi problem, the facility

is very useful, and it is used frequently, especially for systems-related tasks. Of
particular interest in this context are exec^com segments with the name start-up. ec.

These are invoked automatically when a user logs in and they allow the creation of

convenient and ‘friendly’ environments within Multics.

Table I. Comparative timings for Multics control language and comparable PL/1

programs on a Honeywell level 68 DPS

Multics control

language (s)

PL/1 (s)—includes
compilation, dynamic linking

and execution

Towers of Hanoi

2 discs 0-272 1-158

3 discs 0-724 1-191

4 discs 1-522 1-256

5 discs 3-206 1-296

Ackermann’s function

A(2, 0) 0-861 1-166

A(2, 1) 2-362 1-169

A(2, 2) 4.501 1-172

A(2, 3) 7-454 1-172

A(2,4) — 1-172

Note finally that, as shown in Table I, the command-language solutions to the two

problems are competitive in terms of virtual cpu time (though the measurement of this

tends to be inaccurate in time-sharing environments) with the more conventional

solutions using PL/1 (say), so long as the arguments are small.
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Identification

Multics Command Language
W. H. Southworth, G. Schroeder, R. Sobecki, D. Eastwood

Purpose

The Multics Command Language provides the user with a concise means of
expressing his wishes to the Multics system. The language and
Implementation are based on the work and suggestions of L. Peter Deutsch,
E. L. Glaser, R. M. Graham, C. N. Mooers , J. H. Saltzer, and C. Strachey.

Introduction

Most time-sharing systems provide the user with various services which
may be invoked from his console by means of "commands" to the operating
system. A small number of time-sharing systems go beyond this and allow
any user to define (with varying degrees of ease) his own commands, which
may be used in exactly the same way as the system supplied commands

.

Nearly all command programs, whether user defined or system provided,
require additional information, which must be supplied by the user,
before they can complete their function. Some systems require that every
command program directly interrogate the user for the additional
information it needs. A more general method is to accept "arguments" in
addition to the command name, at the time the command is issued by the
user. These arguments are then passed on to the command program by the
system. This approach permits great flexibility in the design of command
programs. Information may be supplied by arguments, interrogation or a
combination of both.

Issuing a command is analogous to executing a function or subroutine call
in a language such as PL/1 or FORTRAN. With this view, the name of the
command is simply the name of a command program to be either interpreted,
if it is a user defined macro (see BX,1.01 for a description of the Macro
facility) , or executed if it is the name of an entry point in an
executable segment which conforms to Multics standards (as defined in
BD. 7.02)

.

The arguments are either used in the expansion of the macro or
passed to the executed procedure in the standard manner. The link between
the issuance of the command by a user and the calling of the command
program is the command language interpreter. It performs many of the
functions of a compiler, principally, parsing the command (which is
initially a character string) into its basic elements (e.g., command name
and arguments) and formatting the arguments for use by the command
program. Finally, the command language interpreter calls the macro
expander if the command name is the name of a macro or calls the command
program directly.

The Command

A command is a sequence of zero or more elements. The first element is
interpreted as the name of the command program and any additional
elements are arguments. The normal command program will expect input
arguments which are fixed length character strings, and return a value
which is a varying character string. If the command program does not
expect arguments in this form the command language interpreter, the
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Shell, will convert the type of the arguments according to information
contained in the symbol table for the command program. The elements of
command are separated by spaces and terminated by a semicolon or a new
line character. For example, to change the name of a file from "a" to
"b", using the change_name command, a user would type

(1) change_name a b

Elements

The simplest type of element is a string of characters not containing any
spaces or other characters reserved by the command language. The
semicolon and new line characters are reserved. Other reserved characters
will be identified as they are encountered. The three elements in example
1 . at the end of the previous section are the simple character strings
" change_name ", "

a
" , and "

b
"

.

Any element (or part of an element) may be a command. The user can tell
the interpreter to evaluate an element as a command by surrounding the
element with brackets (which are reserved characters) . For example in

(2) change_name [oldest file] b

the second element is a command. When an element is evaluated is a
command, the result of that evaluation (i.e., the returned value of the
function) replaces the original element. Suppose that the command
" oldestfile " returns as its value the name of the oldest file in the
users' directory, then example 2 changes the name of the oldest file to
"b" . In this case, the first argument to the command program change name
is the character string returned by the command program "oldestf ile" and
the second argument is the character string "b"

.

Note that the spaces before and after the brackets are necessary to
indicate that the result of "oldestfile" is an element and not a portion
of an element. Suppose that the user had a program "me" which returned as
its value his default working directory, (e,g., "me" would return a
character string of the form ">user_dir_dlr>Southworth.MAC" ) . While
working in some other directory the user might link to a file in his
default directory by typing

(3) link [me] >test . epl

This command consists of two elements, the character string "link" and
the result of the command program "me" concatenated with the character
string ">test.epl". Similarly a command of the form

(4) link [me] >[ filename 17]

would consist of only two elements, where the second element is formed
using the values returned by the two command programs "me" and
"filename". Note that the command "filename" has one argument, the
character string "17".

Sometimes it is necessary to use a reserved character without its special
meaning. For example, a command name might contain an imbedded space. The
characters quote and left and right accent are reserved for this purpose.
Reserved characters within any string of characters surrounded by quotes
or accents, will be treated as ordinary characters. For example,

( 5 ) ' change name ' a b
change" "name a b



"change name" a b
change '

' name a b

are all acceptable methods for executing a command whose name contains an
imbedded space. Also, since quotes and accents are reserved characters it
may be desirable to suppress the special meaning of one or the other.
This may be done by surrounding quotes with accents, and accents with
quotes. For example, the operator could issue the command

broadcast "Don't do anything!"

Active, Neutral, and Empty Commands

There are three types of commands which may appear in elements: active,
neutral and empty commands . In order to understand how these three types
differ it is necessary to have a basic knowledge of the scanning and
interpretation algorithm of the shell. A command line is scanned from
left to right. The shell maintains a pointer which indicates its current
position in the line. Whenever a command has been completely scanned it
is evaluated (i.e., the command program is executed). For example in

( 6 ) change_name a b ;

when the pointer has reached the indicated location the shell will
recognize that the end of a command has been reached and call the command
program " change_name " . In the case of an element which is a command,
nothing to the right of the element will be scanned until after the
command element has been executed and its value has been inserted back
into the command line. For example, in

(7) change_name [oldestfile] b;

when the pointer has reached this point the command program "oldestfile"
will be called. If the returned value is "xyz", the transformed command
line is

( 8

)

change_name xyz b

;

Note that the pointer is set to the beginning of the inserted value. This
is important because the returned value will now be scanned in the same
manner as the original command element. If "oldestfile" had returned the
string " [myoldest] " , then the scanning pointer would have encountered
this string as a command because of the brackets and executed the command
"myoldest"

.

The type of command in the previous examples, which returns a value which
is rescanned we will define as an "active command" . The command language
recognizes two other kinds, a "neutral command" and an "empty command". A
command preceded by "| [" rather than

|
|

[' is said to be "neutral". Its
value is not rescanned. This is particularly useful in defining certain
macros. If our previous example with "oldestfile" had read

(9) change_name
|
[oldestfile] b;

and "oldestfile" had returned the string "[myoldest]", then this value
would have been inserted into the command line and the scan pointer set
to the next character after the inserted character string, i.e..



( 10 ) change_name [myoldest] b
A

In this case the inserted string would not be recognized as a command and
"change name" would be called with " [myoldest] " as its first argument. An
"empty" command is preceded by "| |

[". After an empty command is executed
its value is thrown away.

The vertical bar is a reserved character only in the context of "
|

[
" or

"| |

[”• An easy way to remember the three types of commands is to think of
a command as performing the three actions: evaluation, insertion, and
reevaluation. A single vertical bar suppresses reevaluation leaving
evaluation and insertion, while a double vertical bar suppresses
reevaluation and insertion leaving only the first evaluation.

Iteration

Sometimes the user wishes to repeat a command with one or more elements
changed. The iteration facility of the command language is provided for
economy of typing in this case. The "iteration set" is a set of zero or
more elements enclosed by parentheses (parentheses are reserved
characters) . If it contains no elements it is ignored. Otherwise, each
element of the set will, in turn, replace the entire set in the command
line. For example

(11) print (a b c).epl

is equivalent to the three commands

print a.epl; print b.epl; print c.epl

More than one iteration set may appear in a command. All possible
combinations will be executed. For instance, the compound command

(print delete) xyz ( . epl .eplbsa);

would expand into the commands

:

print xyz. epl
print xyz. eplbsa
delete xyz . epl
delete xyz. eplbsa

Nested iteration sets behave in exactly the same manner as unnested sets.
Evaluation of parentheses occurs from the outside in. The principal use
of nested iteration sets is to reduce typing when subsets of an element
are repeated. For example

(12) make_directory >user_dir_dir> ( (Southworth Martin). MAC Stone. GE)

would make three directories

>user_dir dir>Southworth.MAC
>user dir dir>Martin.MAC
>user_dir_dir>Stone . GE

Summary of Command Language Syntax

The Multics Command Language contains the following syntactical elements

.

command line



the character string representation of a command or sequence of
commands

.

command
a sequence of zero or more elements separated by spaces (in the
command line) . The first element is taken as the command name and
additional elements as arguments.

iteration set
a sequence of zero or more elements, enclosed by parentheses, which
are Inserted in turn in the command for evaluation.

command program
either a defined macro to be recognized and expanded by a macro
expander program, or executable machine instructions, whose name
represents an entry point in a segment which conforms to Multics
standards (as defined in BD.7.02).

element
the basic component of a command; it may represent a command name,
or argument

.

active command
a sequence of zero or more elements surrounded by brackets (it is
not necessary to enclose the character string typed in at the user's
console with brackets, in this case brackets are assumed) . The
character string within the brackets is treated as a command - it is
evaluated, its value is inserted into the command line and its value
is rescanned as part of the command line.

neutral command
a sequence of zero or more elements surrounded by "| [" on the left
and "] " on the right which is evaluated, as a command line, but is
not rescanned.

empty command
a sequence of zero or more elements surrounded by "

|
|

[

"

on the left
and "]" on the right which is evaluated. Its value is thrown away.

literal string
a character string surrounded by quotes or balanced left and right
accents. Its value should be taken literally, i.e., reserved
characters within the string should not be recognized for their
special meaning.

semicolon
denotes the end of a command and the beginning of another command of
the same type

.

new line
new line characters within the command string passed to the command
language interpreter are ignored if encountered in the scan of the
command line. This should not be confused with the fact that the new
line character may serve as a delimiter for whatever program called
the interpreter

.

Imp1ementation

The command language interpreter, the Shell, is normally driven by the
Listener. The shell provides the necessary parsing to process a character
string as a command. The Listener can be conceptually described as



[ [read_line] ] ; listener

Its function is to listen for requests in the form of command lines typed
in at the user console. In the above command language description, the
listener reads in a line from the console, evaluates the line as a
command, and re-calls itself to repeat the function. In actuality this is
usually accomplished by a Multics procedure which calls the shell which
accepts as its single argument a character string (fixed length or
varying) to be evaluated as a command.

Formal Description of the Multics Command Language

The following Backus-Naur description formally defines the syntactic
components of the Command Language. For simplicity we have not provided
definitions for the ASCII characters, based on the assumption that the
alphabet is not open to design changes. If a construct is enclosed in
parentheses it is to be interpreted as zero or more occurrences of that
construct

.

<command sequence> ::= <command> (<semicolon> <command>)

<command> ::= <element list>

<element list> ::= <element> (<spaces> <element list>)

<element> ::= <element component> (<element>)

<element component> ::= <function>
|

citeration set>
<literal string>

|

<unreserved character>

<function> ::= <active function>
|

cneutral function>
<empty function>

<active function> <left bracket> <command> <right bracket>

<neutral function> ::= <vertical bar> <left bracket>
<command> <right bracket>

<empty function> ::= <vertical bar> <vertical bar> <left
bracket> <command> <right bracket>

<iteration set> ::= <left paren> <element list> <right paren>

<literal string> ::= <quoted string>
|

<balanced quoted string>

<quoted string> ::= <quote> cbalanced quoted string> <quote>
|

<quote> <unquoted character string> <quote>

cbalanced quoted string> cleft accent> cbalanced quoted
substring> cright accent>

cbalanced quoted substring> ::= ccharacter string not containing ' or '>

|

cbalanced quoted string>

thvv@best.com
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