skip to main content
10.1145/3487552.3487833acmconferencesArticle/Chapter ViewAbstractPublication PagesimcConference Proceedingsconference-collections
research-article
Open Access

Open for hire: attack trends and misconfiguration pitfalls of IoT devices

Published:02 November 2021Publication History

ABSTRACT

Mirai and its variants have demonstrated the ease and devastating effects of exploiting vulnerable Internet of Things (IoT) devices. In many cases, the exploitation vector is not sophisticated; rather, adversaries exploit misconfigured devices (e.g. unauthenticated protocol settings or weak/default passwords). Our work aims at unveiling the state of IoT devices along with an exploration of the current attack landscape. In this paper, we perform an Internet-level IPv4 scan to unveil 1.8 million misconfigured IoT devices that may be exploited to perform large-scale attacks. These results are filtered to exclude a total of 8,192 devices that we identify as honeypots during our scan. To study current attack trends, we deploy six state-of-art IoT honeypots for a period of 1 month. We gather a total of 200, 209 attacks and investigate how adversaries leverage misconfigured IoT devices. In particular, we study different attack types, including denial of service, multistage attacks and attacks from infected online hosts. Furthermore, we analyze data from a /8 network telescope covering a total of 81 billion requests towards IoT protocols (e.g. CoAP, UPnP). Combining knowledge from the aforementioned experiments, we identify 11, 118 IP addresses (that are part of the detected misconfigured IoT devices) that attacked our honeypot setup and the network telescope.

References

  1. Netlab 360. 2021. Anglerfish Honeypot. (2021). https://blog.netlab.360.com/tag/anglerfish-honeypot/Google ScholarGoogle Scholar
  2. abuse.ch. 2021. MalwareBazaar. (2021). https://bazaar.abuse.ch/Google ScholarGoogle Scholar
  3. Peter Adkins. 2017. Kako Honeypot. (2017). https://github.com/darkarnium/kakoGoogle ScholarGoogle Scholar
  4. Syaiful Andy, Budi Rahardjo, and Bagus Hanindhito. 2017. Attack scenarios and security analysis of MQTT communication protocol in IoT system. In 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI). IEEE, Yogyakarta, Indonesia, 1--6. Google ScholarGoogle ScholarCross RefCross Ref
  5. Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Menscher, Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. 2017. Understanding the Mirai Botnet. In 26th USENIX Security Symposium (USENIX Security 17). USENIX Association, Vancouver, BC, 1093--1110. https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakisGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  6. Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Menscher, Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. 2017. Understanding the Mirai Botnet. In 26th USENIX Security Symposium (USENIX Security 17). USENIX Association, Vancouver, BC, 1093--1110. https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakisGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  7. Arbor-Bbservatory. 2021. arbor-observatory. (2021). https://www.arbor-observatory.com/Google ScholarGoogle Scholar
  8. S. Arvind and V. A. Narayanan. 2019. An Overview of Security in CoAP: Attack and Analysis. In 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). IEEE, Coimbatore, India, 655--660. Google ScholarGoogle ScholarCross RefCross Ref
  9. Remillano II Augusto, Noel Collado Patrick, and Ivy Titiwa Karen. 2020. XORDDoS, Kaiji Variants Target Exposed Docker Servers. (2020). https://www.trendmicro.com/en_us/research/20/f/xorddos-kaiji-botnet-malware-variants-target-exposed-docker-servers.htmlGoogle ScholarGoogle Scholar
  10. Leonardo Babun, Kyle Denney, Z. Berkay Celik, Patrick McDaniel, and A. Selcuk Uluagac. 2021. A survey on IoT platforms: Communication, security, and privacy perspectives. Computer Networks 192 (2021), 108040. Google ScholarGoogle ScholarCross RefCross Ref
  11. Belkin. 2021. Belkin Wemo. (2021). https://www.belkin.com/us/Google ScholarGoogle Scholar
  12. Bitsight.com. 2021. Bitsight.com. (2021). https://www.bitsight.com/Google ScholarGoogle Scholar
  13. Alex Burt. 2020. Gitpaste-12: a new worming botnet with reverse shell capability spreading via GitHub and Pastebin. (2020). https://blogs.juniper.net/en-us/threat-research/gitpaste-12Google ScholarGoogle Scholar
  14. CAIDA. 2021. The CAIDA UCSD Network Telescope "Darknet Scanners" Dataset - April-May2021. (2021). https://www.caida.org/data/passive/telescope-darknet-scanners_dataset.xmlGoogle ScholarGoogle Scholar
  15. Censys. 2021. Censys Search. (2021). Retrieved May 24, 2021 from https://censys.io/Google ScholarGoogle Scholar
  16. Douligeris Christos, Raghimi Omid, Barros Lourenço Marco, and Marinos Louis. 2020. ENISA Threat Landscape 2020 - Emerging Threats. ENISA ETL2020 (2020), 8--10. https://www.enisa.europa.eu/publications/emerging-trendsGoogle ScholarGoogle Scholar
  17. Cloudflare. 2021. SSDP DDoS Attack. (2021). https://www.cloudflare.com/learning/ddos/ssdp-ddos-attack/Google ScholarGoogle Scholar
  18. CriminalIP. 2021. CriminalIP. (2021). https://security.criminalip.com/Google ScholarGoogle Scholar
  19. Cymmetria. 2016. MTPot. (2016). https://github.com/Cymmetria/MTPotGoogle ScholarGoogle Scholar
  20. Decester. 2000. An SSH Honeypot. (2000). https://github.com/desaster/kippoGoogle ScholarGoogle Scholar
  21. Zakir Durmeric. 2018. zgrab2. (2018). https://github.com/zmap/zgrab2Google ScholarGoogle Scholar
  22. Zakir Durumeric. 2017. ZTag. (2017). https://github.com/zmap/ztagGoogle ScholarGoogle Scholar
  23. Zakir Durumeric, Michael Bailey, and J. Alex Halderman. 2014. An Internet-Wide View of Internet-Wide Scanning. In 23rd USENIX Security Symposium (USENIX Security 14). USENIX Association, San Diego, CA, 65--78. https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/durumericGoogle ScholarGoogle Scholar
  24. Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. 2013. ZMap: Fast Internet-wide Scanning and Its Security Applications. In 22nd USENIX Security Symposium (USENIX Security 13). USENIX Association, Washington, D.C., 605--620. https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/durumericGoogle ScholarGoogle Scholar
  25. fireHOL. 2021. Europe Blocklist. (2021). https://github.com/firehol/blocklist-ipsets/blob/master/ip2location_country/ip2location_continent_eu.netsetGoogle ScholarGoogle Scholar
  26. Apache Foundation. 2021. Apache ActiveMQ. (2021). https://activemq.apache.org/Google ScholarGoogle Scholar
  27. Apache Foundation. 2021. Apache Qpid. (2021). https://qpid.apache.org/Google ScholarGoogle Scholar
  28. Jazib Frahim, Carlos Pignataro, Jeff Apcar, and Monique Morrow. 2015. Securing the internet of things: A proposed framework. (2015).Google ScholarGoogle Scholar
  29. Robert David Graham. 2014. MASSCAN: Mass IP port scanner. (2014).Google ScholarGoogle Scholar
  30. GreyNoise. 2021. GreyNoise. (2021). https://viz.greynoise.io/Google ScholarGoogle Scholar
  31. hackingump. 2020. UpnP - Messing up Security since years. (2020). https://malwareandstuff.com/upnp-messing-up-security-since-years/Google ScholarGoogle Scholar
  32. Muhammad A. Hakim, Hidayet Aksu, A. Selcuk Uluagac, and Kemal Akkaya. 2018. U-PoT: A Honeypot Framework for UPnP-Based IoT Devices. In 2018 IEEE 37th International Performance Computing and Communications Conference (IPCCC). IEEE, Orlando, FL, USA, 1--8. Google ScholarGoogle ScholarCross RefCross Ref
  33. Hwanjo Heo and Seungwon Shin. 2018. Who is Knocking on the Telnet Port: A Large-Scale Empirical Study of Network Scanning. In Proceedings of the 2018 on Asia Conference on Computer and Communications Security (ASIACCS '18). Association for Computing Machinery, New York, NY, USA, 625--636. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. HKVision. 2021. HKVision Network Camera - User Manual. (2021). https://www.hikvision.com/UploadFile/image/EN-user%20manual%20of%20%20network%20camera%20v3.0.0.pdfGoogle ScholarGoogle Scholar
  35. T. Holz and F. Raynal. 2005. Detecting honeypots and other suspicious environments. In Proceedings from the Sixth Annual IEEE SMC Information Assurance Workshop. IEEE, West Point, NY, USA, 29--36. Google ScholarGoogle ScholarCross RefCross Ref
  36. ICSA. 2016. CISA-ICSA-16-299-01. (2016). https://us-cert.cisa.gov/ics/advisories/ICSA-16-299-01Google ScholarGoogle Scholar
  37. Fraunhofer IKE. 2021. Malpedia. (2021). https://malpedia.caad.fkie.fraunhofer.de/Google ScholarGoogle Scholar
  38. Coalition Inc. 2021. BinaryEdge. (2021). https://www.binaryedge.io/Google ScholarGoogle Scholar
  39. InterneTTL. 2021. InterneTTL. (2021). http://www.internettl.org/Google ScholarGoogle Scholar
  40. ipgeolocation. 2021. ipgeolocation.io. (2021). ipgeolocationGoogle ScholarGoogle Scholar
  41. ipip.net. 2021. ipip.net. (2021). https://en.ipip.net/Google ScholarGoogle Scholar
  42. Philipp Jeitner. 2018. Telnet IoT Honeypot. (2018). https://github.com/Phype/telnet-iot-honeypotGoogle ScholarGoogle Scholar
  43. Mattijs Jonker, Alistair King, Johannes Krupp, Christian Rossow, Anna Sperotto, and Alberto Dainotti. 2017. Millions of Targets under Attack: A Macroscopic Characterization of the DoS Ecosystem. In Proceedings of the 2017 Internet Measurement Conference (IMC '17). Association for Computing Machinery, New York, NY, USA, 100--113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jeffrey Voas. 2017. DDoS in the IoT: Mirai and Other Botnets. Computer 50, 7 (2017), 80--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. LeakIX. 2021. LeakIX. (2021). https://leakix.net/Google ScholarGoogle Scholar
  46. Tongbo Luo, Z. Xu, Xing Jin, Y. Jia, and Xin Ouyang. 2017. IoT CandyJar : Towards an Intelligent-Interaction Honeypot for IoT Devices. (2017), 11 pages.Google ScholarGoogle Scholar
  47. Gordon Lyon. 2021. NMap Network Mapper. (2021). https://nmap.org/Google ScholarGoogle Scholar
  48. Phillip Maddux. 2019. HoneyPy Honeypot. (2019). https://github.com/foospidy/HoneyPyGoogle ScholarGoogle Scholar
  49. Malwaremustdie. 2020. Rhombus - Linux DDoS botnet aims VPS & IoT, w/persistence & dropper. (2020). https://otx.alienvault.com/pulse/5e6aacfe61b118f3fc41026aGoogle ScholarGoogle Scholar
  50. Linda Markowsky and George Markowsky. 2015. Scanning for vulnerable devices in the Internet of Things. In 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Vol. 1. IEEE, Warsaw, Poland, 463--467. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Ian Mcateer, Muhammad Imran Malik, Z. Baig, and P. Hannay. 2017. Security vulnerabilities and cyber threat analysis of the AMQP protocol for the internet of things. In Australian Information Security Management Conference. Edith Cowan University, Perth, W.A., 11.Google ScholarGoogle Scholar
  52. Tor Metrics. 2021. ExoneraTor. (2021). https://metrics.torproject.org/exonerator.htmlGoogle ScholarGoogle Scholar
  53. MITRE. 2021. Common Vulnerabilities and Exposures. (2021). Retrieved May 24, 2021 from https://cve.mitre.org/Google ScholarGoogle Scholar
  54. David Moore. 2002. Network Telescopes: Observing Small or Distant Security Events. In 11th USENIX Security Symposium (USENIX Security 02). USENIX Association, San Francisco, CA, 9. https://www.usenix.org/conference/11th-usenix-security-symposium/network-telescopes-observing-small-or-distant-securityGoogle ScholarGoogle Scholar
  55. Shun Morishita, Takuya Hoizumi, Wataru Ueno, Rui Tanabe, Carlos Gañán, Michel JG van Eeten, Katsunari Yoshioka, and Tsutomu Matsumoto. 2019. Detect me if you... oh wait. An internet-wide view of self-revealing honeypots. In 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). IEEE, IEEE, Washington DC, USA, 134--143.Google ScholarGoogle Scholar
  56. Natlas. 2021. Natlas. (2021). https://github.com/natlas/natlasGoogle ScholarGoogle Scholar
  57. Nataliia Neshenko, Elias Bou-Harb, Jorge Crichigno, Georges Kaddoum, and Nasir Ghani. 2019. Demystifying IoT Security: An Exhaustive Survey on IoT Vulnerabilities and a First Empirical Look on Internet-Scale IoT Exploitations. IEEE Communications Surveys Tutorials 21, 3 (2019), 2702--2733. Google ScholarGoogle ScholarCross RefCross Ref
  58. NIST. 2021. misconfiguration. (2021). https://csrc.nist.gov/glossary/term/misconfigurationGoogle ScholarGoogle Scholar
  59. NIST. 2021. NATIONAL VULNERABILITY DATABASE. (2021). https://nvd.nist.gov/Google ScholarGoogle Scholar
  60. Onyphe. 2021. Onyphe. (2021). https://www.onyphe.io/Google ScholarGoogle Scholar
  61. Michel Oosterhof. 2016. Cowrie SSH/telnet honeypot. (2016). https://github.com/micheloosterhof/cowrieGoogle ScholarGoogle Scholar
  62. ZoomEye Org. 2021. ZoomEye. (2021). https://www.zoomeye.org/Google ScholarGoogle Scholar
  63. Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Matsumoto, Takahiro Kasama, and Christian Rossow. 2015. IoTPOT: Analysing the Rise of IoT Compromises. In 9th USENIX Workshop on Offensive Technologies (WOOT 15). USENIX Association, Washington, D.C., 9. https://www.usenix.org/conference/woot15/workshop-program/presentation/paGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  64. The Honeynet Project. 2021. The Honeynet Project. (2021).Google ScholarGoogle Scholar
  65. Quadmetrics. 2021. Quadmetrics. (2021). https://www.quadmetrics.com/Google ScholarGoogle Scholar
  66. Net Systems Research. 2021. Net Systems Research. (2021). https://www.netsystemsresearch.com/Google ScholarGoogle Scholar
  67. Rapid7 Research. 2021. Project Sonar. (2021). https://www.rapid7.com/research/project-sonar/Google ScholarGoogle Scholar
  68. Philipp Richter and Arthur Berger. 2019. Scanning the scanners: Sensing the Internet from a massively distributed network telescope. In Proceedings of the Internet Measurement Conference. Association for Computing Machinery, New York, NY, United States, Amsterdam, Netherlands, 144--157.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Lukas Rist, Johnny Vestergaard, Daniel Haslinger, A Pasquale, and J Smith. 2013. Conpot ics/scada honeypot. (2013).Google ScholarGoogle Scholar
  70. ShadowServer.org. 2021. ShadowServer.org. (2021). https://www.shadowserver.org/Google ScholarGoogle Scholar
  71. Sharashka. 2021. Sharashka. (2021). https://sharashka.io/data-feedsGoogle ScholarGoogle Scholar
  72. Hajime Shimada, Katsutaka Ito, Hirokazu Hasegawa, and Yukiko Yamaguchi. 2019. Implementation of MQTT/CoAP Honeypots and Analysis of Observed Data. SECURWARE 2019, The Thirteenth International Conference on Emerging Security Information, Systems and Technologies 10 (2019), 35--40.Google ScholarGoogle Scholar
  73. SHODAN. 2021. Shodan. (2021). https://www.shodan.io/Google ScholarGoogle Scholar
  74. Drew Springall, Zakir Durumeric, and J Alex Halderman. 2016. FTP: The forgotten cloud. In 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE, IEEE, Toulouse, France, 503--513.Google ScholarGoogle ScholarCross RefCross Ref
  75. Shreyas Srinivasa, Jens Myrup Pedersen, and Emmanouil Vasilomanolakis. 2021. Gotta catch 'em all: a Multistage Framework for honeypot fingerprinting. (2021). arXiv:cs.CR/2109.10652Google ScholarGoogle Scholar
  76. Miroslav Stampar. 2017. HonTel Honeypot. (2017). https://github.com/stamparm/hontelGoogle ScholarGoogle Scholar
  77. CAIDA STARDUST. 2021. Flow Level Traffic (FlowTuple). (2021). https://stardust-dev.caida.org/docs/data/flowtuple/Google ScholarGoogle Scholar
  78. Stretchoid.com. 2021. Stretchoid.com. (2021). http://stretchoid.com/Google ScholarGoogle Scholar
  79. Alpha Strike. 2021. Alpha Strike. (2021). https://www.alphastrike.ioGoogle ScholarGoogle Scholar
  80. Oleg Surnin, Fatima Hussain, Rasheed Hussain, Svetlana Ostrovskaya, Andrey Polovinkin, JooYoung Lee, and Xavier Fernando. 2019. Probabilistic Estimation of Honeypot Detection in Internet of Things Environment. In 2019 International Conference on Computing, Networking and Communications (ICNC). IEEE, Honolulu, HI, USA, 191--196. Google ScholarGoogle ScholarCross RefCross Ref
  81. FOFA Cyberspace Surveying and Mapping. 2021. Fofa. (2021). https://fofa.so/Google ScholarGoogle Scholar
  82. Madiha H. Syed, Eduardo B. Fernandez, and Julio Moreno. 2018. A Misuse Pattern for DDoS in the IoT. In Proceedings of the 23rd European Conference on Pattern Languages of Programs (EuroPLoP '18). Association for Computing Machinery, New York, NY, USA, Article 34, 5 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Dino Tools. 2010. Web Honeypot. (2010). https://github.com/DinoTools/dionaea/Google ScholarGoogle Scholar
  84. Gray Hat Tools. 2021. PFT Printer Exploration. (2021). http://www.phenoelit.org/fr/tools.htmlGoogle ScholarGoogle Scholar
  85. Communication & Distributed Systems RWTH Aachen University. 2021. RWTH Aachen Scan. (2021). http://researchscan.comsys.rwth-aachen.de/Google ScholarGoogle Scholar
  86. Stanford University. 2021. Censys Universal IPv4 Internet Dataset. (2021). https://scans.io/Google ScholarGoogle Scholar
  87. Ivan Vaccari, Maurizio Aiello, and Enrico Cambiaso. 2020. SlowITe, a Novel Denial of Service Attack Affecting MQTT. Sensors 20, 10 (2020). Google ScholarGoogle ScholarCross RefCross Ref
  88. Ivan Vaccari, Maurizio Aiello, and Enrico Cambiaso. 2020. SlowTT: A Slow Denial of Service against IoT Networks. Information 11, 9 (2020). Google ScholarGoogle ScholarCross RefCross Ref
  89. Emmanouil Vasilomanolakis, Shankar Karuppayah, Mathias Fischer, Max Mühlhäuser, Mihai Plasoianu, Lars Pandikow, and Wulf Pfeiffer. 2013. This Network is Infected: HosTaGe - a Low-Interaction Honeypot for Mobile Devices. In Proceedings of the Third ACM Workshop on Security and Privacy in Smartphones & Mobile Devices (SPSM '13). Association for Computing Machinery, New York, NY, USA, 43--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Emmanouil Vasilomanolakis, Shankar Karuppayah, Max Mühlhäuser, and Mathias Fischer. 2014. HosTaGe: A Mobile Honeypot for Collaborative Defense. In Proceedings of the 7th International Conference on Security of Information and Networks (SIN '14). Association for Computing Machinery, New York, NY, USA, 330--333. Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Alan Tamer Vasques and João J. C. Gondim. 2020. Amplified Reflection DDoS Attacks over IoT Reflector Running CoAP. In 2020 15th Iberian Conference on Information Systems and Technologies (CISTI). IEEE, Seville, Spain, 1--6. Google ScholarGoogle ScholarCross RefCross Ref
  92. Alexander Vetterl and Richard Clayton. 2018. Bitter Harvest: Systematically Fingerprinting Low- and Medium-interaction Honeypots at Internet Scale. In 12th USENIX Workshop on Offensive Technologies (WOOT 18). USENIX Association, Baltimore, MD, 9. https://www.usenix.org/conference/woot18/presentation/vetterlGoogle ScholarGoogle Scholar
  93. Benjamin Vignau, Raphaël Khoury, Sylvain Hallé, and Abdelwahab Hamou-Lhadj. 2021. The evolution of IoT Malwares, from 2008 to 2019: Survey, taxonomy, process simulator and perspectives. Journal of Systems Architecture 116 (2021), 102143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. Virustotal. 2021. Virustotal. (2021). https://www.virustotal.comGoogle ScholarGoogle Scholar
  95. VMWare. 2021. RabbitMQ. (2021). https://www.rabbitmq.com/Google ScholarGoogle Scholar
  96. Gerry Wan, Liz Izhikevich, David Adrian, Katsunari Yoshioka, Ralph Holz, Christian Rossow, and Zakir Durumeric. 2020. On the Origin of Scanning: The Impact of Location on Internet-Wide Scans. In Proceedings of the ACM Internet Measurement Conference (IMC '20). Association for Computing Machinery, New York, NY, USA, 662--679. Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. Gerry Wan, Liz Izhikevich, David Adrian, Katsunari Yoshioka, Ralph Holz, Christian Rossow, and Zakir Durumeric. 2020. On the Origin of Scanning: The Impact of Location on Internet-Wide Scans. In Proceedings of the ACM Internet Measurement Conference (IMC '20). Association for Computing Machinery, New York, NY, USA, 662--679. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. Jianxin Wang, Ming K. Lim, Chao Wang, and Ming-Lang Tseng. 2021. The evolution of the Internet of Things (IoT) over the past 20 years. Computers & Industrial Engineering 155 (2021), 107174. Google ScholarGoogle ScholarCross RefCross Ref
  99. M. Wang, Javier Santillan, and F. Kuipers. 2018. ThingPot: an interactive Internet-of-Things honeypot. (2018). arXiv:arXiv:1807.04114Google ScholarGoogle Scholar
  100. ZMap. 2020. ZMap Block and Allow Lists. (2020). https://github.com/zmap/zmap/wiki/Block-and-Allow-ListsGoogle ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    IMC '21: Proceedings of the 21st ACM Internet Measurement Conference
    November 2021
    768 pages
    ISBN:9781450391290
    DOI:10.1145/3487552

    Copyright © 2021 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 2 November 2021

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

    Acceptance Rates

    Overall Acceptance Rate277of1,083submissions,26%

    Upcoming Conference

    IMC '24
    ACM Internet Measurement Conference
    November 4 - 6, 2024
    Madrid , AA , Spain

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader