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Abstract

To explore mission-critical information, an adversaryngsiactive traffic analysis attacks injects probing traffic
into the victim network and analyzes the status of undeglyiayload traffic. Active traffic analysis attacks are
easy to deploy and hence become a serious threat to misstaalcapplications. This paper suggests statistical
pattern recognition as a fundamental technology to evaleffectiveness of active traffic analysis attacks and
corresponding countermeasures. Our evaluation showsdhiaiple entropy of ping packets’ round trip time is
an effective feature statistic to discover the payloadfitafaite. We propose simple countermeasures that can
significantly reduce the effectiveness of ping-based edtaffic analysis attacks. Our experiments validate the

effectiveness of this scheme, which can also be used insthparios.

1 Introduction

This paper addresses issues related to network securityzoNesecurity has become a serious issue to address
as usage of the Internet increases. Private and/or missiticakcinformation has been stolen by thousands of
successful break-ins over the years [13]. Within 10 minutes Sapphire Worm [18] severely disrupted people’s

access to the Internet.



Network security attacks can be classified with respect $altg and techniques [16]. In the perspective of
result, we can further partition attacks based on breachesrdidentiality, availability, and integrity [2, 16]. A
breach of confidentiality results in unauthorized accessftwmation, a breach of availability results in the denial
of service, and a breach of integrity results in unauthdrizkkeration of system components or output.

This paper studies relatively new kind of attacks, traffialgsis attacks, which result in the breach of con-
fidentiality. In a traffic analysis attack, an adversarystrie obtain mission critical information of systems by
observing the statistics of traffic. Such critical inforinatcan include the identity of senders or receivers, the
establishment and tear-down of flows, bandwidth consumpharstiness, etc. A number of such attacks recently
([9, 14, 24, 27, 28]) have illustrated the seriousness ofitmaage incurred. By using a timing analysis on SSH
traffic [27], passwords for the communication parties cardbatified.

In terms of attack techniques, traffic analysis attacks eafutther divided into two subclasses, namely passive
and active traffic analysis attacks. lipassive traffic analysis attackhe adversary passively collects traffic data
(e.g., traffic dumped usingpdump and makes analysis over them. Passive traffic analysiskattaay, at first
sight, appear innocuous since those attacks do not actltelythe traffic (e.g., drop, insert, and modify packets
during a communication session). Thus, this type of attackfien difficult to detect. But, a passive traffic
analysis attack is sometimes difficult to deploy. For exanplcommon way of realizing a passive attack is by
wire tapping. This is not easy since it is generally moreigitforward to modulate communication on a given
wire than to eavesdrop it [1]. On the other haadtive traffic analysis attackiypically use probing to collect
traffic information. In this case, the adversary may leg@l traffic probing means (e.g., FTP/TELNET/Ping/etc.)
to collect traffic data. As such, this kind of attack is easgéaploy.

Most of the previous work on traffic analysis attacks haveceotrated on passive attacks [24]. This paper will
focus on active traffic analysis attacks and their countesuees. In particular, we consider that the adversary
pingsvarious locations in the network in order to detect payldatus. We assume that critical information that
the adversary tries to explore is the user payload traffig wahich is important to users’ anonymity on the Internet
since constructing the user traffic rate matrix may lead eléakage of user identities [24]. We systemically
evaluate various statistical methods by which the adwersan use. Specifically, using the statistical pattern
analysis as the framework, we find that the statistics (sammglan, sample variance and sample entropyduid

trip time (RTT) of the ping messages can help the adversary to obtaist#tus information of payload. Of those



statistics, sample entropy is robust (e.g., not sensitiveoise) and effective. To counter this ping probing and
other similar active traffic analysis attacks, we proposenple but effective solution. Our experiments show that
by randomly delaying the non-payload traffic (e.g., pingkeds), the effectiveness of traffic analysis attacks can
be significantly reduced. This result is validated by theocatanalysis.

The rest of this paper is organized as follows. Section Zwevitraffic padding as the countermeasure to traffic
analysis attacks and recent practical traffic analysislkatan different scenarios. Section 3 proposes the stalsti
pattern recognition as a fundamental technology to covargelarray of possible information security testing
approaches. Section 4 applies statistical pattern retogrfior analyzing the effectiveness of traffic padding
schemes under active traffic analysis attacks and the pomdsg countermeasures. We conclude this paper and

discuss the future work in Section 5.

2 Related Work

Shannon [25] describes his perfect secrecy theory, whittireifoundation for the ideal countermeasure system
against traffic analysis attacks.

Traffic padding is a major class of countermeasures thatrelsers have proposed to counter traffic analysis
attacks. Baran [3] proposes the use of heavy unclassififfiit tra interfere with the adversary’s tampering of
the links of a security network system used for communigatiassified information. He also suggests adding
dummyi.e. fraudulent, traffic between fictitious users of thetaysto conceal the true amount of traffic.

A survey of countermeasures for traffic analysis is given3di].] To mask the frequency, length, and origin-
destination patterns of an end-to-end communication, dymessages are used to pad the traffic to a predefined
pattern. It is evident that such a predefined pattern is seftidout not necessary based on the perfect secrecy
theory.

The authors in ([20, 21, 33]) give a mathematical frameworgptimize the bandwidth usage while preventing
traffic analysis of the end-to-end traffic rates. Timmermaa] [proposes an adaptive traffic masking (hiding)
model to reduce the overhead caused by traffic padding. Wieerate of real traffic is low, the link padding rate
is reduced as well, in order to conserve link bandwidth. €dtréecrecy is violated in this case, as large-scale
variations in traffic rates become observable.

The authors of NetCamo [11] provide the end-to-end prewandf traffic analysis while guaranteeing QoS (the

3



worst case delay of message flows).

To protect the anonymity of email transmissions, Chaum [dppses the use of Mix - a computer proxy.
One technique used by a Mix is to collect a predefined numbxed-size message packets from different users
and to shuffle the order of these packets before sending tlhieniMany researchers suggest using constant rate
padding (i.e., make the traffic rate appear as constant)dastiwhe user and the proxy, e.g., [29]. Raymond in [24]
gives an informal survey of severadl hoctraffic analysis attacks on systems providing anonymousces. For
example, by correlating traffic rate or volume, the attackay discover the end points of a communication. One
of his conclusions is that traffic padding is essential ta@@hanonymity services.

Recently researchers have disclosed some advanced traffises attack techniques. Soegal. [27] describe
how SSH 1 and SSH 2 can leak user passwords under a passiieanalysis attack. In order to keep latency
small, and thus preserve interactivity, these SSHs sen#tayieoard input over the network as soon as a user
types it. The authors illustrate how as a result the intekpiatimes in a SSH session accurately reflect the typing
behavior of the user by exposing the inter-keystroke tinmfigrmation. This in turn can be used to infer plaintext
as typed on the keyboard. To prevent this, the authors peopadding traffic on the SSH connections to make
it appear to be a constant rate. When there are not enougktpackmaintain the constant rate, fake (dummy)
packets are created and sent.

Felten and Schneider [9] develop an active timing attaclkedasn browsing a malicious web page. This mali-
cious web page is able to determine if a user has recentlydmwa different target web page. The malicious web
page contains embedded attack codes, which try to downleazbdile from the target webpage. If the user has
recently browsed the target webpage, it is highly posslhudé the target webpage is cached locally, in which case,
the access time will be very small, otherwise it will be muatger. The malicious code reports the access timing
to the attacker, and then the attacker can decide if the aserdeently browsed the target webpage by this access
timing. The malicious codes can be Javascript codes, oranlittle more effort, time measurement HTML codes.
Clearly this attack is very difficult to prevent, and the opBrfect countermeasure is to turn off the cache.

SafeWeb [14] is a web service, that uses anonymizing serwdrieh behave like mixes, to act as proxies
between users and the web servers. The proxy downloadsphested webpage on behalf of the user and forwards
it to the user in an encrypted form. Hintz [12] shows how obses can take advantage of HTML weakness of

using a separate TCP connection for each HTML object (suttTa4l texts, image files, audio annotations, etc.)



to deploy passive traffic analysis attacks. The number of G@mections and the corresponding amount of data
transferred over each connection form a fingerprint, whildwa an observer to identify the accessed webpage by
correlating fingerprint data with traffic observed betwdenuser and the anonymizing server. To invalidate these
fingerprints, we have to merge all the connections into alsiognnection or add noise (fake messages, etc.) to

the web traffic flows. Suet al. [28] use many experiments to show the possibility of the alexploit.

3 Statistical Pattern Recognition - a Fundamental Informaton Security Testing Technology

From the discussion above, we can see that traffic paddinghe@ scheme that researchers have proposed to
counter traffic analysis attacks. But until now, there hanhb® systematic framework to evaluate the security of
those schemes.

In the following, we propose statistical pattern recogmitas the systematic approach to test systems under
traffic analysis attacks. We believe that it can cover a tyaoétesting attack approaches. Below we give a brief
description of statistical pattern recognition and how wplgait to evaluate traffic padding systems.

Pattern recognition ([8, 15]) studies how to distinguislitgras, i.e., similarities and regularities hidden in
data, and use these patterns for recognition or classtficagtatistical pattern recognitiof35] uses statistical
approaches for pattern recognition.

In statistical pattern recognition, often the task islassifythe pattern of an unknown data sample as belonging
to one of theC classes. The pattern of the unknown data sample is charactdry ad-dimensional feature vector.
The set ofl features is chosen by investigators and often requireghitfal understanding of the phenomena being
observed, as well as possible adverse effects of the emvéon Patterns of data samples classified into one class
show small intraclass variations, while patterns of thasa damples in different classes exhibit large interclass
variations.

In this paper, we are interestedsaopervised classificatigrin which data samples of known classes are avail-
able. The classification has two stages: First, we train gdataples of known classes off-line for the feature
selection/extraction and the selection of a classifier wittresponding classification rules. Then, using the fea-
ture and the classifier, we classify a newly derived data s&aompline.

Figure 1 describes a simplified statistical pattern clasgifin procedure, which is explained in an active traffic

analysis attack context below.
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Figure 1. Stages in Statistical Pattern Recognition: (a) of  f-line training; (b) on-line classification

The off-line training procedure has the following steps:

1. Offline Data Collection: The adversary builds his own eysto simulate the victim network elements.

Simulated probing traffic traces are collected using a traffialyzer.
2. Data Pre-processing: This step filters any noise in tHeated data.

3. Feature selector/extractor: The data is analyzed, anfibetiure vector is created. The feature vector is the

most effective in representing the interesting patteraididin the data.

4. Classification rule generation: After the adversary diegion the feature vector, he needs to determine the
classification rules and the corresponding classifier. ilgaper, we assume that the adversary uses a Bayes

decision rule and a Bayes classifier.

After the off-line training, the adversary has enough infation for the on-line classification of an unknown

data sample:

1. The real traffic trace sample is collected and pre-preckssthe same fashion as in the Step 2 of the off-line

stage.



2. For the processed real traffic trace, the adversary edé=uthe feature vector measurement and then uses

the selected classifier to classify the sample.

The key problem is the selection of features, which deteesthe effectiveness of the statistical pattern recog-
nition.

This framework can be easily adapted to analyze the sedavigy of a system using a variety of countermea-
sures against traffic analysis such as the ones describextiin® 2. Also, the traffic analysis attacks in Section 2

can also be explained in a more formal way under this framlewor

4 Testing the Security of Systems Using Traffic Padding undefctive Traffic Analysis Attacks

In this section we use statistical pattern recognition adrdimework to test the security level of systems using
traffic padding algorithms under active traffic analysiseits. We first show how well active traffic analysis
attacks can explore an effective traffic padding schemelsmgive the corresponding countermeasures.

In order to simplify the discussion, we focus on securityljpemns for the protection of user payload traffic
rates. Protection of other characteristics of the traffichsas inter-packet times, or source-destination a&siti
can be analyzed in the same fashion.

The effectiveness of traffic padding in providing protectepends on two factors: (1) choice of the traffic
padding algorithm and (2) the implementation platform. Ttadfic padding algorithm defines how the traffic
appears to the observer (constant rate, randomized gemeodipadding traffic, or others). In [10] we found that
it is not secure to depend on the commonly used constantredfie padding, which achieves a constant traffic
rate by inserting dummy packets to create padded traffic. Mfegsed a variant rate traffic padding as an effective
alternative.

This section shows that the traffic rate can be determinedtiyedraffic analysis attacks even when the sophis-
ticated variant rate traffic padding scheme in [10] is used Wl then propose the corresponding countermeasures

and quantify how well they can be.
4.1 Testing Environment

In the following analysis we will use a reference impleméntaof the variant rate traffic padding, which is

illustrated in Figure 2.



We assume that the network consistgpaftected subnetsvhich are connected by theternetwork Traffic
within protected subnets is assumed to be shielded fromttaeka The unprotected internetwork can be either
public networks (e.g., the Internet) or easily accessibtsmticast mediums. Traffic on these networks can be
observed by third parties. This model captures a varietyitodtsons, ranging from battleship convoys, where
the large-scale shipboard networks are protected and tireship communication is wireless, to communicating

PDAs, where the protected networks consist of single nodes.

Internetwork
Subnet Ag\y 1 Gw 2 Subnet B
Sender Receiver

o o

SubnetCASubneD Analyzer

Noise Noise
Sender Receiver Adversary

Figure 2. Network Model

The hosts in the protected subnedsifnet Aandsubnet B exchange traffic with each other through the open
(unprotected)nternetwork In this paper, the internetwork is simulated by a MarconRE®00 enterprise switch-
ing router [23] with two subnets: Subnet C and D. Securitegaly 1 (GWW 1) and security gateway Z:(V2) are
placed at the two boundaries of the internetwork and protrafic padding necessary to prevent traffic analysis.
We note that the gateways can be realized either as stand-bfixes, modules in routers and switches, software
additions to network stacks, or device drivers at the endshd%r our purposes, they are realized as stand-alone
boxes, with TimeSys Linux/Real Time [31] installed on eaclchine. The traffic padding module is integrated
into the gateway’s firewall [19] system; we use the corredpanfirewall rules to specify what traffic should be
protected. Currently, the user traffic generated betwebnetlA and B is protected.

To prevent the information leaking from the packet size tladl packets are padded to the same size by the
security gateways’ padding algorithm. In addition, padatent is perfectly encrypted, therefore non-observable
Thus, the only data available for analysis are time stampsckets.

To implement traffic padding algorithms on the two gateway&igure 2, we use a timer to control packet



sending. When a packet is scheduled to be sent in the timerout routine, the sender gateway uses a data
packet that originates from within the subnets if one islalde. Otherwise a padding (dummy) packet is used.
This timer can be a constant interval timer (CIT), which isesigdic timer with a constant interval between two
consecutive timeouts. This is the most commonly used mefhrottaffic padding, i.e., the constant rate traffic
padding. As mentioned above, we found that the CIT trafficdpaglis even vulnerable to passive traffic analysis
attack. So, to counter passive traffic analysis attacksteftdy, in [10] we proposed to use a variable interval
timer (VIT) with a variable amount of time between two congae timeouts, where the interval satisfies some
distribution.

In this paper, we will evaluate the effectiveness of VITfitgbadding under active traffic analysis attacks. In the
attack, the adversary pings the sender gateway GW1, asddrfegure out the aggregated user payload traffic rate
according to statistics of round trip time (RTT) of the pingssages. We use this ping attack as a model for any
active attack that tries to correlate the delay incurred by1®n the attack packets in order to infer information
about the payload traffic.

A network analyzer [30] is used for data collecting in thisrkvoWe expect that similar, albeit less accurate

results can be obtained based on data collected by simpgeliic@tcpdump.

4.2 Feature Statistics, the Classifier, and Security Metrie Detection Rate

Now we apply statistical pattern recognition as the seguesting framework in Figure 1 to the VIT traffic
padding system in Figure 2 under this ping probing attack.défeote the testing process as user payload traffic
rate recognition.

Feature Statistics

The selection of feature statistics is key to the succesgsting. In this paper, our feature vector is one-
dimensional, i.e., we use one feature of the data sampldéoclassification. The statistics of RTT of the ping
probes are chosen as the candidate features.

The three most interesting candidate featuresaneple mearsample varianceandsample entroppf RTTSs.

For a sample of size, {X1,---, X, }, the calculation of sample mean and variance is direct.



Sample Mean:

6=EX)="%= (1)

Sample Variance:

F=B(X-EX)])="Lt— 2

wheren is the sample size.
Sample Entropy

The main weakness of sample mean and sample variance aefstdtistics is their sensitivity to noise (big
outliers). To cope with this problem, we also investigatethar feature statistic, sample entropy, based on the
histogram-based method developed in [17].

First, we create a histogram of the RTT sample for a given izi@ Gay,Ah). Then, according to [17], the

differential entropy estimator of a random varialdés continuous distribution is

Z log 2 log Ah 3

where B is the number of bins for the histogram,is the sample size; is the number of sample points in the
ith bin, andAh is the histogram’s bin size. If a constant bin size is useduiinout the experiment, the term
log Ah in (3) is a constant and hence does not influence the recogmiult. It can therefore be discarded, and

the entropy estimation formula simplifies to

Hz—Z—log¥ (4)

Classification
Bayes classifier is a good choice for the supervised claatdit The Bayes decision rule [35] for minimum

recognition/classification error is:

ConsiderC classesws, - - - ,wc, the data sample characterized by pattern (featutelongs to class; if
P(wi)p(z|w;) > P(wj)p(z|w;) (5)
forallj =1,---,C, whereP(w;) is thea priori probability of each class occurring and is assumed to be know

andp(z|w;) is the class-conditioneprobability density functiofPDF) estimated by off-line training.
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This rule tells us that patternshould be classified into a class with the biggesst priori probability.

In this paper, pattern (feature)can be sample mean, sample variance, and sample entropyefsmnple size.
We study a simplified version of traffic rate recognition,,igfew discrete payload traffic rates are the classes we
try to classify the feature statistiasto.

To use Bayes decision rules, we have to estimate the class PA3Fs. Histograms are often too coarse for
the estimation of a feature’s distribution and its chanasties. We use the kernel estimator of PDF [26], which is

effective for our problem. The kernel estimator of a dengityction with kernelK is defined by

N —_ .
fla) = 5 SRS ©)
=1

whereh is the window width, also called the smoothing parameteramdwidth, andV is the data size, which
is often big in order to capture the class (population) ottarsstics. In this paper, we use a Gaussian kernel, i.e.,
K= \/%7 exp (—%)
Detection Rate as the Security Metric

The Bayes decision rule above partitions the measurematiefp) space int@' regions(y, - - -, 2¢ such that
if x € €; thenz belongs to class;. Generally regions of classes can intersect. If an unknowasurement (of

the feature)c is in such an intersection region, we cannot tell to whiclsslabelongs. The probability of correct

recognition (success rate)s calculated in (7)
C
v= | max P(w)p(elw)de ()
1=

In this paper, we use the success raterhich we calldetection rateas the security metric in this specific case
to gauge the effectiveness of a traffic padding system. Tehgedetection rate, we first determine thegegions

and then calculate by (7). We can see that the detection rate is determined bgstimation of the PDFs.
4.3 User Payload Traffic Rate Recognition

Now we check the effectiveness of VIT traffic padding undes #ctive traffic attack, ping probing. We assume
that in Figure 2, the adversary tries to recognize the rabserf payload traffic originating from Subnet A, and he is
behind the Marconi router. Subnet C is connected to the Marowoiter as the cross traffic (noise) generator while

the cross traffic receiver is located in Subnet D. Note thaifctioss traffic shares the outgoing link of the router,
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creating a case that the cross traffic causes an impact todbang ping packets generated by the adversary. By
this configuration, we can analyze the detection rate fdn tiee case of zero cross traffic and the case of non-zero
cross traffic.

For these experiments, VIT traffic padding on gateways useariant interval timer to control the packet
sending. Currently, the time interval satisfies a normatithstion with a mean of 10ms and a standard deviation
of 3ms. That is, on average the traffic rate between GW1 and 3WWQA0 packets per second (pps). This is a
strong configuration to counter passive traffic analysec#.

In order to keep the following description simple, we lintietuser payload traffic rate recognition to the case
of two classes. The two classes are low rate traffic of 10pdshagh rate traffic of 40pps. The user packets are
of the same length, and their inter-arrival time satisfiesxonential distribution. Thus the user’s traffic sending
process is a Poisson process with mean rate 10pps and 4@ppstrecly. Moreover, we assume that rate 10pps
and 40pps have the same probability of occurrence. Thus ithienom detection rate is 50%, which corresponds

to random guessing.

091
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-6~ sample entropy
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Detection Rate
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Figure 3. Detection Rate by RTT of Ping Packets in Case of Zero Cross Traffic

Figure 3 gives detection rate by different statistics (dampean, sample variance, and sample entropy) of RTT

of ping packets in terms of sample size in the case of zer® ¢rafic. We have the following observations

1. When sample size approaches 800, sample mean, sampleceadnd sample entropy can achieve 100%
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detection rate. This concludes that even VIT traffic paddicigeme can not resist the active traffic analysis

attacks.

How can this happen? We must explore a packet's travel tihraolig operating system’s TCP/IP stacks
to find the reason. When a user packet enters the sender g&ted®, it takes time, denoted as packet
processing latency, for the network subsystem to procespdbket. That is, the processing of user packets
can preempt other OS processes, including the processititg gfrobing ping packets, which are always
delayed when perturbed. Thus, RTT of ping packets has samekicorrelation with the rate of the payload
traffic generated by users in Subnet A. A bigger rate of usglopd traffic may delay the ping packets for
more time and increases the mean RTT of ping packets. Thikyssample mean of RTT of ping packets

can recognize the user payload traffic rate well.

A larger rate of user payload traffic may also cause more ti@miaf RTT of ping packets. That is, the
variance and entropy of RTT of ping packets is increaseds iBhwhy sample variance and sample entropy

of RTT of ping packets can recognize the user payload tradte well.

2. Sample variance’s detection rate is less accurate thraplsanean and sample entropy. The reason for
sample variance’s worse detection rate is that an OS maylgjea on its routine processing from time to
time, which causes an occasionally longer delay of ping @&ckThe longer delay creates big RTTs, i.e.,
outliers, which are not correlated with user payload trdftitthe OS’s noise and cause incorrect estimation
of the sample variance. Sample variance is the second mahBAtl and sensitive to these outliers. Thus

outliers influence sample variance’s performance. Ougthee often difficult to model and filter [7].

To check the outliers’ impact on detection rate, we use alldweendB; and upper bound,, [22] to control

the outlier filtering:

B, = lower quatrtile of the statistic data f. * 1Q (8)

B, = upper quartile of the statistic dataf. « 1Q) 9)

wheref, is the adjustable filter coefficient add) is the interquartile range (the difference between the uppé
lower quartile). Data smaller thaB, or greater thatB,, are labeled as outliers and should be discarded.

Figure 4 (a) gives detection rate of different statistichatsample size of 800 by adjusting the filter coefficient
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Figure 4. Detection Rate with Different Filter Coefficients in Case of Zero Cross Traffic

fe for the data with zero cross traffic. We can see that the filbefficient does not exert much influence on the
detection rate by sample entropy, while sample mean andlsampance are sensitive to it. Figure 4 (b) gives the
percentage of data that is filtered out given the filter caeffic We can see that whefp = 200, we keep all the
outliers without data filtered, but Sample entropy stilliagks around 93% detection rate while detection rates by
sample mean and sample entropy approach to 50%. \fhenl10, the three feature statistics can achieve 100%
detection rate while not a lot of data is filtered. Thus, theeckton rate in other figures of this paper uggs= 10.
Figure 5 gives the detection rate when there is cross traifozigh the router. The following observations can

be made.

1. Under the interference of cross traffic, the detectioesrhy different statistics are reduced. As we expected,
the cross traffic will compete for resources (CPU time, rogteeue and bandwidth) with the probing ping
packets. When there is a heavy cross traffic, it will distind RTT of the probing ping packets. The noise
added by cross traffic covers the signal of correlation betweser payload traffic and RTT of ping packets
found in the case of zero cross traffic. Thus, the detectita g all the statistics of RTT is generally

reduced with the increasing intensity of cross traffic.

2. However, sample entropy still achieves around an 80%ctieterate when the link (the link shared by

Subnet D, Subnet B and the adversary) utilization is arou®d.3This demonstrates the danger of active
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Figure 5. Detection Rate by RTT of Ping Packets in Case of non-  Zero Cross Traffic
traffic analysis attacks and the necessity to develop couetsures to active traffic analysis attacks.

3. Sample entropy performs better than sample mean andsaanince with the increasing intensity of cross
traffic. This is because sample entropy is a probability tveid sum and is not sensitive to outliers. With the
increasing intensity of cross traffic, the probability tatliers happen increases too. Sample mean is still
sensitive to these outliers since it is the first order mono@RTT while sample variance is more sensitive
to outliers than sample mean. This is the reason that we esigehthe importance of sample entropy as the

statistic of RTT of the probing ping packets to explore thglpad traffic rate.

4.4 Countermeasures

To counter the active traffic analysis attacks, there arevapfessible methods.

The first approach is to disable the ping service on secuatgvgays, but the disadvantage is that ping often is
a useful service for us to debug a system, e.g., to check if @\llve. Sometimes we can not sacrifice functions
for the sake of security.

The second approach is inspired by the cross traffic influendbe detection rate. We can add a random delay
to the non-protected traffic. Introducing a random delaygisaé to adding noise to the RTT of the ping packets.

When the noise is big enough, it will hide the signal of catiein between user payload traffic and RTT of ping
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Figure 6. Detection Rate by RTT of Delayed Ping Packets with Z  ero Cross Traffic

packets.

We still use the configuration in Figure 2. There is no croaffit. Figure 6 gives the detection rate by
different statistics when ping packets are delayed by aamnohterval, which satisfies a normal distribution
N(10ms, 3ms?). We can see that the detection rate by different featurestitatapproaches 50% (the minimum

detection rate for two classes recogntion) at a large sagigde

5 Conclusions and Final Remarks

This paper reviews the traffic analysis attacks and propSkesinon’s perfect secrecy theory as a foundation
for developing countermeasures to traffic analysis attémksformation security systems. A system violating
perfect secrecy conditions can leak mission critical imfation. Since a perfect secrecy is difficult to achieve,
this paper proposes statistical pattern recognition adfaotige framework to evaluate an information system’s
security under traffic analysis attacks because of stalgiattern recognition’s maturity and abundant techréque

We apply this security testing technology to evaluate tloensty of a sophisticated traffic padding scheme under
an active traffic analysis attack, ping probing, aimed aitviey user payload traffic rates. It is found that sample
entropy is an effective and robust feature statistic to@epthe correlation between user traffic rate and the round

trip time of the probing ping packets. The reason for the ssg®©f the exploit is that user traffic causes small
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disturbances to the RTT of ping packets. Moreover, the bifjge user traffic rate, the larger this disturbance.
After a careful analysis, we propose to randomly delay timg piackets to counter the active traffic attack. Our
experiments validate the effectiveness of this scheme.

There is still more work to be done to refine the on-line traffite recognition techniques. Our work shows
that even if we use payload traffic rate recognition at a looabehind noisy routers, sample entropy can still
recognize the payload rate change, dependant on the sldad. It is interesting to check the detection rate in
terms of the number of routers between the attack locatiorntla sender gateway. We are planning on-campus
and inter-campus experiments in the near future.

Also, this paper empirically analyzes the detection ratsdyple mean, sample variance and sample entropy.
Our experience tells us that given the distribution of RTThef probing ping packets, it is also possible to analyze
the detection rate statistically. The difficulty lies in @ehining outliers in RTT data and deriving a correct model
of RTT of the probing ping packets.

In this paper we discuss the simple case in which two claskésftic rates could be distinguished. Our
technique can be easily extended to multiple ones, in whaske emore off-line training is needed. We also assume
that the payload traffic from the user has a constant packet Riecent measurements ([4, 6]) indeed indicate that
the size of packets on the Internet can be described usitrpdisons, with most of the packets distributed at a
few fixed sizes. According to thig priori knowledge (maybe in addition to specific knowledge paréictb the

environment), the user traffic fitting these distributioas be simulated.
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