
©2023 by Trend Micro, Incorporated. All rights reserved.

The Dark Evolution: Advanced Malicious Actors
Unveil Malware Modification Progression
By Peter Girnus and Aliakbar Zahravi

We uncovered hundreds of heavily obfuscated batch files for deploying both modified and fully

undetectable (FUD) malware with the evolving BatCloak obfuscation engine. The vast majority of these

samples gathered since 2022 are capable of persistently evading antivirus detection, granting threat

actors the ability to load numerous malware families and exploits with ease through highly obfuscated

batch files. As a matter of fact, 80% of the samples we’ve unearthed have no-detection across all security

vendors.

The research presented documents the evolution of the BatCloak obfuscation engine and uncovers the

alarming modifications that have propelled malware to new levels of evasive capabilities.

What Is Fully Undetectable (FUD) Malware?
The term “fully undetectable malware” or FUD refers to a type of malicious software designed to evade

antivirus and security solutions. To achieve FUD status, a piece of malware might employ combined

techniques such as encryption, obfuscation, and polymorphism. The goal of a piece of FUD malware is to

remain completely undetected in compromised systems, allowing threat actors to carry out a wide range

of malicious activities that include but are not limited to cyberespionage. FUD status is often achieved

progressively over an evolutionary cycle of continuous malware development.

FUD status is seen as an obfuscation end goal to bypass antivirus and security solutions. A quantum LNK

builder and a weaponized PowerShell backdoor are some possible examples of FUD-status components

or tools. Among skilled cybercriminals and threat actors, what is considered FUD malware is always

evolving and remains a goal in developing novel obfuscation patterns and techniques. Pieces of malware

and attacks that abuse these tools and techniques are discovered defensively through static and dynamic

analysis of software.

As the end goal of FUD malware and security evolves, so do malware authors’ obfuscation techniques for

achieving FUD status — the classic cat-and-mouse game. For comparison, an early example of FUD would

be a simple singular layer of Base64 encoding or string reversing. Since modern security solutions can

now detect many of these techniques, authors of FUD tools usually use a combination of these techniques

together in a redundant, multitiered approach along with tools like encryption, compression, reassigning

system variables to random strings, concatenation, or junk code, among other techniques and tools.

https://www.bleepingcomputer.com/news/security/malicious-windows-lnk-attacks-made-easy-with-new-quantum-builder/
https://www.bleepingcomputer.com/news/security/malicious-windows-lnk-attacks-made-easy-with-new-quantum-builder/
https://cybersecuritynews.com/undetectable-powershell-backdoor/

©2023 by Trend Micro, Incorporated. All rights reserved.

Risks Associated With FUD Malware
Malware modification represents a form of development that has given rise to a modified breed of

cybercriminals capable of creating and continuously deploying FUD malware. With unparalleled precision,

these elusive cybercriminals continually adapt while effortlessly evading the most sophisticated security

measures, without distinction between organizations and individuals that they target.

According to research, the financial and physical damages that cybercrime can inflict worldwide

is expected to hit the trillions by 2025. To put this estimation into perspective, by 2025 the cost of

cybercrime would be equivalent to the world’s largest economies in terms of a country’s gross domestic

product (GDP). As the world becomes increasingly connected through the internet of things (IoT) and AI,

the threat of malicious activities also continues to evolve at an alarming pace.

Scanning For Detections of BatCloak
During our investigation, we extracted hundreds of BatCloak engine samples from a public repository.

Conducting basic data analysis on these, we found that over 80% of the retrieved 784 samples were not

being detected by antivirus solutions. Moreover, the average antivirus detection rate across all samples

was less than one. In the following sections, we give a technical breakdown of how BatCloak, as an

example of FUD malware, evades security solution technologies.

0 detections

2 detections

11 detections

10 detections

1 detection

9 detections

13 detections

79.6%

11.2%

4.1%

2.0%

1.0%

1.0%

1.0%

Figure 1. Security solutions with and without detections for BatCloak engine samples collected from September 2022

to June 2023. The sample with the highest number of detections was at 13 counts

(SHA256: 6a5f7524b1c13d8e9ed1870462387ee9fb34332d6824830aed3454d56085bb36)

https://cybersecurityventures.com/top-5-cybersecurity-facts-figures-predictions-and-statistics-for-2021-to-2025/
https://www.gartner.com/en/newsroom/press-releases/2021-07-21-gartner-predicts-by-2025-cyber-attackers-will-have-we
https://www.mckinsey.com/capabilities/risk-and-resilience/our-insights/cybersecurity/new-survey-reveals-2-trillion-dollar-market-opportunity-for-cybersecurity-technology-and-service-providers

©2023 by Trend Micro, Incorporated. All rights reserved.

Analyzing BatCloak’s Capabilities, Effectivity
In the following sections, we identify and break down the main techniques that BatCloak employs to

achieve FUD malware status.

Batch Scripting: Manipulating MS-DOS CMD Strings
To understand modern FUD-equipped batch obfuscators, it’s important to comprehend some underlying

principles of Microsoft Disk Operating System command (MS-DOS CMD) string and variable manipulation.

Many modern batch obfuscation techniques are built on the use of simple underlying string and variable

manipulation techniques, with its origins going as far back as the deployment of MS-DOS.

Exploring the MS-DOS Set Command

The set command is a Windows command-line command that allows operating systems to set, display,

and modify environment variables. It is one of the oldest commands shipped with Microsoft Windows as

part of the operating system since MS-DOS was released.

Exploring MS-DOS Variable Concatenation

By setting multiple variables containing the strings necessary to execute a command, Microsoft allows

users, through the MS-DOS command-line interface (CLI) or batch files, to concatenate variables together

to generate the final command.

Figure 2. MS-DOS variable concatenation

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/set_1

©2023 by Trend Micro, Incorporated. All rights reserved.

Exploring MS-DOS Character Substring Extraction

Using the MS-DOS built-in ability, developers can extract substrings from set variables using a

%variable:~start_index,end_index% syntax.

Figure 3. Substring extraction

For example, in this case developers can use substring extraction to:

•	 Assign “hello” to var2 by using substring extraction on var1.

•	 Assign a space character to var3.

•	 Assign “world” to var4 by using substring extraction on var1.

•	 Concatenate variables together to achieve our desired “hello world” example.

Assigning the Set Command to a Variable

Putting together variable assignments using the set command and concatenating MS-DOS variables can

develop interesting patterns.

©2023 by Trend Micro, Incorporated. All rights reserved.

Figure 4. Assigning a SET command to a variable

In a simplified example, we’ve assigned the set command to the user-defined SET variable. We then

utilized our newly defined SET variable to declare the EQUALS variable, which has been assigned the equal

(=) operator. Following this, we can assign different variables using the %SET%”var5%EQUALS%<VALUE>”

logic. Finally, we can concatenate all variables together and upon executing; this allows us to enter a

PowerShell shell.

Putting the Pieces Together: Exploring Basic Batch Obfuscation

To establish a basic obfuscated command, we can utilize simple string techniques to obfuscate the

application of the SET command along with the equal operator, resulting in a simple yet effective

obfuscated command.

©2023 by Trend Micro, Incorporated. All rights reserved.

Figure 5. An example of a basic batch obfuscation

In Figure 5, we are using a combination of character substring extraction and hiding the set command

obfuscated to mask the final command (this is similar to how the combination appears in Figure 4). This

final command is concatenated at the end to deploy a PowerShell command console.

Note that this example serves as a basic demonstration. Contemporary batch obfuscators employ an

array of advanced techniques, such as multilayered obfuscated patterns, junk variables, variable reuse,

and random ordering, among others, to evade modern security solutions.

Jlaive, a Modern Evasive Batch Builder

Stage 1
batch loader

Stage 2
PowerShell loader

Stage 3
C# stub – Loader

Final payload

Deobfuscate
and execute

Decoding, decrypting,
decompressing,

and executing
a C# stub

Decompressing,
decrypting, and
executing the
final payload

Anti-debug

AMSI bypass

Anti-virtual machine (VM)

Figure 6. Jlaive attack chain

©2023 by Trend Micro, Incorporated. All rights reserved.

In 2022, a new FUD builder named Jlaive entered hacker communities and began circulating. This piece

of software offered an executable to a “.bat” builder, which performed exceptionally well against modern

security solutions. This tool underwent continuous updates and refinements with community support,

ensuring a high efficacy rate almost throughout 2022.

Figure 7. Original Jlaive post on Hack Forums

In September 2022, the developer behind the builder officially introduced the hacker community to

Jlaive, a free and open-source executable (“.exe”) to batch “crypter” hosted on both GitHub and GitLab.

During the development process, Jlaive was tested against real systems and Windows 11 virtual machines

(VMs) to ensure efficacy against Windows Defender. The developer of Jlaive also offered an FUD loader

specifically designed for the latest Windows operating system, providing an advanced level of evasion

against current security measures.

Figure 8. The author’s original post official announcing Jlaive

©2023 by Trend Micro, Incorporated. All rights reserved.

The developer, who had a clear understanding of the tool’s nature and potential use, anticipated that the

repositories hosting Jlaive would face imminent takedowns. This is the case with many such tools that are

quickly weaponized by various threat actors, and when we attempted to recover the original GitHub and

GitLab repositories, we learned that they had long been removed.

However, we used the archived version to find the original Jlaive repository hosted on GitHub. The now-

defunct GitHub user shows a heavy commit history to the Jlaive repository during the summer of 2022,

leading to the “official” introduction of Jlaive to hacker communities in September.

It is interesting to note that aside from the Jlaive repository, archived content showed the developer’s

general interest in evasion and batch obfuscation, which is strongly indicative of the developer’s

general interest in FUD technologies. Analysis of the previous Jlaive GitHub repository homepage offers

some additional clues about a builder, including the use of AES encryption, techniques to bypass the

antimalware scan interface (AMSI), C#, and an active Discord community.

Figure 9. The recovered GitHub profile of the Jlaive developer

©2023 by Trend Micro, Incorporated. All rights reserved.

Figure 10. The recovered Jlaive repository

Jlaive provides malicious actors with a comprehensive package, including builders for both a CLI and

a user-friendly graphical user interface (GUI). This piece of software also boasts an array of advanced

functionalities, including the ability to bypass AMSI, auto-debug capabilities, obfuscation generation,

self-deletion, and stealth capabilities. Combined, all these features pose a significant challenge for

cybersecurity defenders and present a complex, formidable, and time-consuming task.

https://learn.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
https://attack.mitre.org/techniques/T1027/010/

©2023 by Trend Micro, Incorporated. All rights reserved.

Figure 11. Jlaive CLI (top) and GUI (bottom)

Figure 12. Comparing and proving obfuscation efficacy using a malicious binary without Jlaive (top, noting security

solutions’ detections), and with Jlaive (bottom, where all the solutions flag the binary as safe)

©2023 by Trend Micro, Incorporated. All rights reserved.

Evidence of early uploads to a public repository during the development of Jlaive offers a compelling

display of its FUD capabilities. These uploads demonstrate how the Jlaive batch builder effectively evaded

detection from multiple antivirus engines, causing a security nightmare for cyberdefenders.

The Offspring: Jlaive Lives On in Clones, Modified Versions
As a result of its open-source nature and effectiveness, Jlaive quickly became a target for cloning and

modifications by various actors and developers. Subsequent to the pages being taken down, some

individuals began offering modified or cloned versions of Jlaive. Some of these modified versions and

clones offered Jlaive as a one-time service for purchase, whole others offered it through subscription-

based models.

Figure 13. A Jlaive clone sample (top and middle) and a clone pricing sample (bottom)

©2023 by Trend Micro, Incorporated. All rights reserved.

We also discovered that some developers even began to port Jlaive with modifications in other languages

such as Rust. Many of Jlaive’s offshoots continue to be removed from code hosting sites such as GitHub

and GitLab but are swiftly replaced by other malicious actors.

Figure 14. Modified Jlaive written in Rust

After Jlaive successfully infiltrated the broader hacker community, the proliferation of Jlaive clones and

modified versions rapidly increased through various distribution channels. These channels include but are

not limited to:

•	 Cloud storage

•	 Dedicated websites

•	 Discord channels

•	 GitHub

•	 GitLab

•	 Hacker forums

•	 Telegram channels

•	 Web applications

It is important to note that certain distribution methods are still active today, posing a significant challenge

in combating the widespread misuse of highly elusive batch loaders. Some of these clones have directly

partnered with other known pieces malware, allowing Jlaive to distribute malicious software even faster

and more effectively. In addition, new clones and modified versions continue to appear, showcasing the

mass proliferation of this FUD batch builder.

©2023 by Trend Micro, Incorporated. All rights reserved.

Figure 15. One sample of an advertised Jlaive clone partnership with other pieces of malware

Jlaive Builder Analysis
Upon pressing the “Build” button, the crypter validates the input file and passes it to the crypter function,

along with a Base64-encoded encryption randomly generated key and initialization vector (IV).

Figure 16. Input file validation

The crypt function first compresses the given payload file using GZipStream and encrypts it using AES

algorithm in CBC cipher mode. Jlaive constructs multi-stage loaders that are intricately nested within one

another. Each stage has its own set of obfuscation and encryption techniques.

©2023 by Trend Micro, Incorporated. All rights reserved.

Figure 17. User payload encryption process

.Net Loader

Once the primary payload has been compressed and encrypted, the crypter builds the first binary loader

and places the user-encrypted payload, renamed payload.exe into the loader resource. The loader binary

is generated based on a file called Stub.cs, a C# file located in the Resources folder.

Figure 18. Jlaive project resources

To keep the payload in memory and run multiple portable executables (PEs) from within the same

process (process hiving), Jlaive uses a modified version of Nettitudes RunPE (runpe.dll), an open-source C#

reflective loader for unmanaged binaries.

Some key features of RunPE include the following:

•	 Receiving a file path or Base64 blob of a PE to run

•	 Manually mapping the file into memory without using the Windows loader in the host process

•	 Loading any dependencies required by the target PE

•	 Patching the memory to provide arguments to the target PE when it is run

•	 Patching the various API calls to allow the target PE to run correctly

•	 Replacing the file descriptors in use to capture output

https://github.com/nettitude/RunPE
https://labs.nettitude.com/blog/introducing-process-hiving-runpe

©2023 by Trend Micro, Incorporated. All rights reserved.

•	 Patching various API calls to prevent the host process from exiting when the PE finishes executing

•	 Running the target PE from within the host process while maintaining host process functionality

•	 Restoring memory, unloading dependencies, removing patches, and cleaning up artifacts in memory
after executing

Figure 19. The logic creates and builds a stub using a compiler, encrypts and writes payload files to disk,

handles potential compilation errors, and manages embedded resources while providing log messages and

deleting files as necessary.

Once the stub is created, the compiler configures and obfuscates Stub.cs loader.

©2023 by Trend Micro, Incorporated. All rights reserved.

Figure 20. Creating C# and obfuscating C# loader

Stub.cs (loader) functionalities include the following:

1.	 File manipulation and self-deletion. Stub.cs sets the attributes of its own executable file to be both
hidden and system, making it less likely to be noticed by users. If the MELT_FILE compilation symbol is
defined, the application attempts to move itself to the system’s temporary directory and then deletes
the original file. When the program finishes execution, it also attempts to delete its own executable
file.

©2023 by Trend Micro, Incorporated. All rights reserved.

Figure 21. Manipulating and deleting the file

2.	 Anti-VM measures. If the ANTI_VM compilation symbol is defined, it checks the system’s manufacturer
and model to determine if it is running within a VM environment such as VirtualBox or VMware. If it
detects a VM environment, the program will terminate itself.

©2023 by Trend Micro, Incorporated. All rights reserved.

Figure 22. Scanning for signs of a VM environment

3.	 Anti-debugging measures. If the ANTI_DEBUG compilation is configured, the loader utilizes methods
within the kernel32.dll Windows library to detect if it is being debugged. If a debugger is detected, the
program will terminate itself.

Figure 23. Checking for anti-debugging measures

4.	 AES decryption and resource extraction. It extracts resources embedded within itself and decrypts
them using AES. In the sample below, the loader decodes a Base64-encoded payload. With the key and
IV, it decrypts the payload using AES. It decompresses the decrypted payload, retrieves the embedded
resource corresponding to the payload, and writes it to a file. It then sets the file attributes as hidden
and system and starts a new thread to execute the file as a process.

©2023 by Trend Micro, Incorporated. All rights reserved.

Figure 24. The loader performs a series of operations to decode, decrypt, decompress, and execute malicious

payloads hidden within embedded resources, allowing a malicious actor to execute unauthorized actions on a system

or carry out malicious activities.

©2023 by Trend Micro, Incorporated. All rights reserved.

Figure 25. Gzip-compressed data; the third function is a method for retrieving an embedded resource as a byte array

for executing the assembly

5.	 Gzip decompression and payload execution. Depending on the USE_RUNPE compilation symbol, the
application either directly loads and executes an assembly or uses RunPE, a method used to run an
executable in the memory space of another process.

Figure 26. Unzipping and executing the payload

©2023 by Trend Micro, Incorporated. All rights reserved.

PowerShell Loader

The PowerShell loader is built from the template located at the resources called Stub.ps1. The crypter

compresses, encrypts, and encodes the generated C# stub binary with Base64 and prepends “::” to it. This

encrypted blob is later added to the batch file loader. Upon execution of the PowerShell loader, it will read

the content of the batch loader and search for the content after “::” to decrypt and execute.

Figure 27. Encrypting C# stub and creating a PowerShell loader process

To read a batch file content, the PowerShell loader uses %~f0, a special parameter that represents the full

path and file name of the batch script itself. Following the parameter’s sequence,

•	 %0 represents the name of the batch file itself.

•	 %~ is a modifier that allows the manipulation of the variable. In this case, ~f is used.

•	 f is a modifier that expands the variable to the fully qualified path (including the drive letter, if
applicable).

Figure 28. PowerShell loader template

©2023 by Trend Micro, Incorporated. All rights reserved.

CreatPS() function is responsible for loading the template and obfuscating it. The code dynamically

creates an obfuscated PowerShell script by replacing placeholders with values from a dictionary for

specific purposes such as security evasion or anti-reverse engineering. It uses techniques such as Base64

encoding, random string generation, and template embedding to add complexity and customization to the

generated script.

Figure 29. Creating an obfuscated PowerShell script

Batch Loader

The last step for the builder is to generate a batch loader. The batch loader contains an obfuscated

PowerShell loader and an encrypted C# stub binary.

Figure 30. Generating a batch loader

©2023 by Trend Micro, Incorporated. All rights reserved.

The createBat() function produces a necessary command to execute the PowerShell loader. In the end,

Jlaive uses BatCloak as a file obfuscation engine to obfuscate the batch loader and save it on a disk.

Figure 31. Batch file obfuscation engine

Dissecting BatCloak, Jlaive’s Obfuscation Engine
As previously mentioned, Jlaive is written in C#. The BatCloak engine is the core engine of Jlaive’s

obfuscation algorithm and includes LineObfuscation.cs and FileObfuscation.cs.

LineObfuscation.cs, the Line Obfuscation Algorithm

The file LineObfuscation.cs is the main file responsible for line obfuscation. The code is organized in the

BatCloak namespace containing the following classes:

•	 LineObfResult

•	 LineObfuscation

The purpose of the LineObfResult struct is to hold the result of the line obfuscation process. The fields

Sets is an array that holds the string representation of the obfuscated lines. The Result field is the field

representing the obfuscated code.

Figure 32. Jlaive source code LineObfResult class

©2023 by Trend Micro, Incorporated. All rights reserved.

The LineObfuscation struct is the main class responsible for line obfuscation. A breakdown of the public

properties includes the following:

•	 Variables: A list of strings containing the variables used in the obfuscated code

•	 Level: An integer holding the level of obfuscation

•	 Boilerplate: A string holding the boilerplate code to be included

Also included in the LineObfuscation class are the private fields:

•	 setvar: A string holding a randomly generated variable used in setting values

•	 equalsvar: A string serving as a comparison operator

•	 usedstrings: A list of strings used to track strings that have been generated

•	 rng: An instance of the Random class to generate random numbers

•	 chars: A constant that serves as a string to represent characters that might be used in string
generation

Figure 33. Jlaive source code LineObfuscation class

The main method responsible for obfuscating code is the Process method, which takes a string

representing the code to be obfuscated and returns a LineObfResult object.

©2023 by Trend Micro, Incorporated. All rights reserved.

Figure 34. Jlaive Process method

This method preforms the following operations:

1.	 Based on the desired obfuscation level, it can split the appropriate number of characters.

2.	 It splits code based on the number of characters, with consideration taken for characters enclosed in
percent signs (%) while generating new variables if applicable.

©2023 by Trend Micro, Incorporated. All rights reserved.

3.	 It builds the obfuscated lines by combining variable names with their corresponding split.

4.	 At the end, it returns the obfuscated result.

FileObfuscation.cs, the File Obfuscation Algorithm

The FileObfuscation.cs algorithm contains the logic responsible for obfuscating batch files. The code

responsible is organized within the namespace BatCloak, containing a single class named FileObfuscation

that contains the Process method.

The Process method takes the following parameters:

•	 contents: A string representing the contents of the batch file

•	 level: An integer value holding the obfuscation level

Figure 35. The main logic for obfuscating batch files; the main objective of this file is to build the final obfuscated

batch, whereas the LineObfuscator (level) obfuscates each line (this file puts it all together and is the “builder” or

orchestrator for the final batch file)

The following key operations are performed:

1.	 The Process method starts with splitting lines using the Environment.NewLine property and storing
individual lines in a list of strings called lines.

2.	 In the original implementation, the Process method adds the line rem https://github.com/ch2sh/Jlaive at
the beginning of the lines list in attribution to the developer.

©2023 by Trend Micro, Incorporated. All rights reserved.

3.	 A new StringBuilder object is defined and called builder.

4.	 A new instance of the LineObfuscation class is declared along with the level parameter.

5.	 At the start of the obfuscation process, an @echo off is appended to the builder object that allows the
batch file to run silently, a common technique to avoid arousing suspicion.

6.	 A condition exists to check if each line starts with either “rem” or “::”. It also checks if the string does
not contain “BatCloak”. If these conditions are met, it does not obfuscate the line.

7.	 The builder appends lines, including:

	 A. Sets: A collection of strings denoting variable assignments

	 B. Result: The obfuscated line

8.	 Finally, the builder object is converted into a string and a carriage return, and newline characters are
trimmed.

During our investigation, we discovered that BatCloak was its own standalone repository at one point,

serving a CLI based obfuscator with its core obfuscation features incorporated into later generations of

batch obfuscators.

Figure 36. BatCloak command-line obfuscator

©2023 by Trend Micro, Incorporated. All rights reserved.

The Evolving Nature of the BatCloak Engine
The actor behind Jlaive contributed to numerous iterations and adaptations of the BatCloak engine and

has also contributed FUD capabilities to other projects, such as the following: CryBat, Exe2Bat, ScrubCrypt,

and SeroXen.

In this section, we delve into the most recent version of the BatCloak engine ScrubCrypt.

ScrubCrypt

ScrubCrypt is the most recent version of the BatCloak engine and represents a noteworthy development

in the evolution of this batch obfuscation modification technique. The decision to transition from an open-

source framework to a closed-source model, taken by the developer of ScrubCrypt, can be attributed

to the achievements of prior projects such as Jlaive, as well as the desire to monetize the project and

safeguard it against unauthorized replication.

Figure 37. The ScrubCrypt website

In addition to boasting FUD capabilities, the actor includes features intended to invade host-based security

measures such as the following:

•	 User account control (UAC) bypass

•	 Anti-debugging capabilities

•	 AMSI bypass

•	 Event tracing for Windows (ETW) bypass

©2023 by Trend Micro, Incorporated. All rights reserved.

Figure 38. ScrubCrypt features advertised on a popular hacking forum

In addition to advertising a host of features designed to evade the latest detection technologies,

ScrubCrypt also allegedly includes testing on a host of popular pieces of malware such as:

•	 Amadey botnet

•	 AsyncRAT

•	 DCRAT (aka DarkCrystal)

•	 Eagle Monitor RAT

•	 Pure Miner

•	 QuasarRAT

•	 Redline Stealer

•	 Remcos RAT

•	 SmokeLoader

•	 UnamSanctam Miner

•	 VenomRAT

•	 Warzone RAT (aka Ave Maria)

https://www.trendmicro.com/en_us/research/23/b/enigma-stealer-targets-cryptocurrency-industry-with-fake-jobs.html
https://www.trendmicro.com/en_us/research/21/i/analyzing-ssl-tls-certificates-used-by-malware.html
https://www.trendmicro.com/en_us/research/21/i/analyzing-ssl-tls-certificates-used-by-malware.html
https://www.trendmicro.com/en_us/research/21/l/collecting-in-the-dark-tropic-trooper-targets-transportation-and-government-organizations.html
https://www.trendmicro.com/en_us/research/23/e/malicious-ai-tool-ads-used-to-deliver-redline-stealer.html
https://www.trendmicro.com/en_us/research/19/h/analysis-new-remcos-rat-arrives-via-phishing-email.html
https://www.trendmicro.com/en_be/research/22/j/black-basta-infiltrates-networks-via-qakbot-brute-ratel-and-coba.html
https://www.trendmicro.com/en_sg/research/19/j/autoit-compiled-negasteal-agent-tesla-ave-maria-delivered-via-malspam.html

©2023 by Trend Micro, Incorporated. All rights reserved.

Figure 39. A simple ScrubCrypt GUI

Conclusion
This research presents the ongoing evolutionary trajectory of BatCloak engine, which aims to gain

interoperability with numerous malware families and serves as a compelling testament to the engine’s

inherent modularity. The evolution of BatCloak underscores the flexibility and adaptability of this engine

and highlights the development of FUD batch obfuscators. This showcases the presence of this technique

across the modern threat landscape.

The second part of this series will look into the remote access trojan (RAT) SeroXen, a piece of malware

gaining popularity and attention among analysts and cybercriminals alike for its stealth. We delve into the

RAT’s own tools and the updated BatCloak engine included as SeroXen’s loading mechanism. The third

part of this series will detail the distribution mechanisms of SeroXen and BatCloak, as well as security

insights on the community and demographic impact of this level of malware sophistication equipped with

batch FUD obfuscation.

In order to stay protected, organizations should consider a cutting-edge, multilayered defensive strategy

and comprehensive security solutions such as Trend Micro™ Managed XDR that can detect, scan, and

block malicious content in highly evolved threats. Organizations can learn more about how the Zero Day

Initiative (ZDI) bug bounty program rewards researchers for responsible vulnerability disclosure as well

as protects organizations globally to stay up to date on the latest news regarding mission critical security

patches.

https://www.trendmicro.com/en_us/business/products/user-protection/sps/endpoint.html
https://www.trendmicro.com/en_us/business/products/detection-response/xdr.html
https://www.zerodayinitiative.com/about/
https://www.zerodayinitiative.com/about/
https://www.zerodayinitiative.com/blog?tag=Security+Patch
https://www.zerodayinitiative.com/blog?tag=Security+Patch

